
384 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Embedded SOAP Server on the
Operating System Level for

Ad-Hoc Automatic Real-Time
Bidirectional Communication

Thomas B. Hodel, Florian Specker and Klaus R. Dittrich

University of Zurich, Dept of Information Technology, Winterthurerstr. 190, CH-8057 Zürich, Switzerland

{hodel, dittrich@ifi.unizh.ch}, specker@icu.unizh.ch

ABSTRACT
Applications using SOAP messages for communication purposes invoke
one or several web-services and normally receive a return message for
each call. In addition to this, our solution proposes that such applica-
tions automatically configure an embedded SOAP server on the oper-
ating system level so that a specified server can send an independent
SOAP request to this application. The result is a generic framework for
an ad-hoc automatic real-time bidirectional communication using/over
SOAP messages.

In this paper we also describe our concept of extending the functionality
of today’s applications and operating systems in order to realize an ad-
hoc automatic real-time bidirectional communication using SOAP via
HTTP. Finally, we take a look at a concrete implementation of an
application which uses SOAP in this customized way.

INTRODUCTION
When thinking about distributed systems, the first thing that comes to
mind is the “trench” that lies between the single components of systems.
This trench will inevitably be an obstacle to interprocessing communi-
cation.

The obvious need for calling remote methods to build a distributed
system is the origin of some very different approaches to communica-
tion across component borders [6,2]. Most of them are aimed strictly
at a specific problem and/or a specific environment. This prevented the
traditional protocols from being used in a wide range of scenarios; SOAP
has the potential to succeed where its predecessors have failed. Its pros
(loose coupling, late binding, platform-, language- and vendor-indepen-
dence, freely available specification and documentation, easy to imple-
ment) make it suitable for many applications, while its cons (resource-
intensiveness, no native security model) are not enough to prevent it
from being used in most of them.

APPROACHES
If a client needs bidirectional communication, SOAP does not provide
it with a solution. Such a communication can be described as “bidirec-
tional, synchronous as well as asynchronous”. While the need for
bidirectional communication (in the sense of sending messages in both
directions) is obvious in itself, the need for synchronous as well as
asynchronous communication can easily be explained. The Remote
Procedure Calls are synchronous in the sense that one endpoint will wait
for a call to be finished before sending the next call, but are asynchronous
in the sense that the application server or client may initiate a
transmission at any time (provided that the previous call of the same
endpoint has been completed by that time).

To meet these needs, a SOAP server is needed at both endpoints. This
does not comply with the traditional Client-Server model, but is
necessary for the “server” to be able to send a message to the “client”
without first having to wait for the “client´s” request. The result is
similar to what is known as “peer-to-peer” [3,7], where each node acts
as the client and server at the same time.

In order to provide the application client with the possibility of
receiving SOAP messages, two solutions are feasible: the client either
embeds its own protocol server or registers itself at an external protocol
server which is already installed on the same machine.

EMBEDDED SOAP SERVER ON THE OPERATING
SYSTEM LEVEL
An embedded SOAP server on the operating system level would enable
bidirectional communication via SOAP and represent an additional
solution, which one could investigate more closely. A possible scenario
for such a SOAP Server Component (SSC) may look like Figure 1.

The operating system ships with a HTTP server and a SOAP router.
Applications may register the methods that need to be callable via SOAP
using the SOAP server API, if they provide a WSDL document contain-
ing a description of the services as far as the application can determine
them (i.e. data type and the number of parameters, return values, etc.).

The SSC would register the application with its methods, completing the
parts of the WSDL document which cannot be controlled by the
application (e.g. the Transport Protocol, the Port numbers or the
method names - since there may be two processes registering a method
with the same name, the SSC must be able to distinguish them properly).
The SSC should generate WSDL documents on the fly to allow dynamic
registering and deregistering; furthermore, it should be able to generate
WSDL documents containing only the methods provided by a specific
application, especially when there is a significant number of applica-
tions that have registered methods. If abnormal termination of regis-
tered applications that leads to invalid register entries is an issue, the
registrations process could be designed as a form of leasing, as known
from DHCP. Registrations would only be valid for a specified amount
of time, after which they would have to be renewed in order not to
become purged.

If being independent of the SOAP binding is desired, the SSC should be
capable of generating SOAP responses even when communicating via a
SMTP binding. This should be done transparently to the applications
registering in order to achieve a true independence from the binding the
SSC uses.

A Routing Table would allow an incoming message to be passed to the
process of the application which registered itself at the SSC for that

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5207

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

Managing Modern Organizations With Information Technology 385

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

method. As can be seen in Figure 2, an incoming message would be
processed as follows:

1. the message arrives at the HTTP server
2. the HTTP server calls the SSCs SOAP router to handle the message
3. the SOAP router determines which process the message should be

passed to by means of the Routing Table
4. the message is passed to the application which registered for the

method
5. the application processes the message
6. the application sends a response to the SSC which then relays it to

the sender of the original message

A SSC, as introduced above, would give application developers a powerful
and easy-to-use possibility for bidirectional SOAP communication. The
integration into the operating system would ease the administration and
the enforcement of security policies, especially in large installations.
Obstacles such as traffic-blocking firewalls would be easier to overcome
and security measures, for example, using SSL to encrypt the commu-
nication, authentication to restrict the use of the services, or logging
facilities, would only have to be implemented once and could be centrally
administrated.

However, a tight integration into the operating system would open the
door for new vulnerabilities and exploits, as is always the case with
additional services. Buffer Overflows in such an integrated component
would allow Computer Worms and Crackers to do a lot of damage, and
security leaks in the logical separation of registered applications would
render the SSC a comfortable place for man-in-the-middle attacks to
bypass the security measures of encrypted communication. Finally,
there is a danger of platform dependence (or at least dependence on a

specific implementation), since a SSC without proper specification
could break with the platform independence of SOAP.

EVALUATION
A method of communication established by components using SOAP,
and realizing the described automatic bidirectional communication based
on the concept of an embedded SOAP server on the operating system
level, is a crucial service for business. As example we are offering this
service within a collaborative word processing system [5]. Therefore we
begin by briefly introducing the underlying concept.

TeNDaX is a Text Native Database eXtension. It enables the storage of
text in current databases in a native form so that editing text is finally
represented as real-time transactions. Under the term ‘text editing’ we
understand the following: writing and deleting text (characters), copying
& pasting text, defining text layout & structure, inserting tables,
pictures, and so on i.e. all the actions regularly carried out by word
processing users. With ‘real-time transaction’ we mean that editing text
(e.g. writing a character/word, setting the font for a paragraph, or
pasting a section of text) invokes one or several database transactions
so that everything which is typed appears within the editor as soon as
these objects are stored persistently. Instead of creating files and storing
them on a file system, the content of documents is stored in a special
way in the database, which enables very fast real-time transactions for
all editing processes.

The database schema and the above-mentioned transactions are created
in such a way that everything can be done within a multi-user environ-
ment, as is known within the database technology field. As a conse-
quence, many of the achievements (with respect to data organization
and querying, recovery, integrity and security enforcement, multi-user
operation, distribution management, uniform tool access, etc.) are now,
by means of this approach, also available for word processing.

TeNDaX proposes a radically different approach, centered on natively
representing text in fully-fledged databases, and incorporating all
necessary collaboration support. Under collaboration support we under-
stand functions such as editing, awareness, fine-grained security,
sophisticated document management, versioning, business processes,
text structure, data lineage, metadata mining, and multi-channel
publishing - all within a collaborative, real-time and multi-user
environment .

Collaborative Editor System
First of all the runtime behaviour and the communication between the
client and the server are introduced. Later we go on to describe the server
and Error Handling. The focus lies on the points introduced by the
components for the automatic SOAP communication

1. The server is started and initialises itself; it is now ready to serve
the clients and awaits their registrations.

2. A client starts up and invokes its embedded HTTP server. It probes
for a free Port in the private Port range, and binds the HTTP server
to this. A WSDL document describing the methods offered by the
client, and how to call them, is generated according to the actual
settings.

3. The client authenticates and registers at the server, handing over
the WSDL document created in the step above.

4. The server adds the client to the list of registered clients. Since
there might be clients who communicate using protocols other than
SOAP, this list must contain additional information, such as the
protocol the client expects, as well as further details. In this case,
all of these further details are described in the WSDL document the
server just received. For now, the server saves it to be able to
communicate with the client in the future. The client is now
registered and ready to work.

5. Every action which the user of our client takes is reported to the
server. If the user has permission to carry out the changes he tries
to make, the server grants them, and it informs the other clients
to whom the changes are relevant. If the user is not permitted to

Figure 1. Diagram of the Presented SOAP System Component (SSC)

Figure 2. Incoming SOAP Message is Passed to Correct Application

386 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

make these changes, the client is informed about the illegality by
the server, and may in turn inform the user about it.

6. After the user has completed his work (e.g. he quits the client), the
client deregisters from the server and stops its embedded HTTP
server. After that, it can exit cleanly.

7. Upon the clients deregistration, the server removes the clients
entry from its list of registered clients and deletes its WSDL
document.

8. After deregistration of the last registered client, the server may be
stopped.

The Collaborative Editor
The client must be able to (de)register itself at the server, to open, close,
create and delete documents, and request the committing of the changes
the user tries to do to an opened document. All of these tasks can be
carried out using the classic Client-Server model [4]. For SOAP commu-
nication, any existing library can be used, and quite a lot of them offer
SOAP client functionality. However with regard to the next require-
ment, the classic Client-Server model fails: the client must be notified
if someone else’s changes on a document opened by the client have been
committed. This is the reason why we also need to have a SOAP server
on the client side as well.

Collaborative Editor Server
The server must be able to (de)register the clients, to process their
requests, and to notify the affected clients about committed changes on
documents. SOAP support on the server side is no big thing.

Error Handling
Using SOAP for the Client-Server communication not only introduces
new possibilities and flexibility, but also new sources of possible errors.
Several things can go wrong when trying to send a SOAP message from
one endpoint to another. Some of these problems can be solved by the
client (or, less favourably, by the user) on its own, so good Error Handling
constitutes a large part of the usability of a client.

If, for example, the other endpoint is unreachable, the problem could
be anywhere between the client and the server. A router between them
may have crashed, or a network cable may have been plugged. The
application client can’t do much in such a situation, but the user possibly
could, if the client tells him what to do (check cables, check the
connection state, check the connection settings, etc.). If other network
problems such as timeouts due to network overload, or connection resets
due to a server crash occur, the client could at least display an error
message explaining what happened, and assist the user in calling
Technical Support to solve the problem.

Nasty things, like internal errors of the HTTP servers or configuration
errors, could be detected automatically by each endpoint, by calling a test
method. If, for example, the client notices that its embedded HTTP
server is not responding, it could try to restart and reconfigure it to solve
the issue. If that doesn’t help, it could still ask the user for help, and send
an exact error message to the developers.

As SOAP is a stateless protocol, endpoints will not notice a connection
failure or an abnormal termination of the communication partner until
they try to send a message. Since it might also be useful to notice
problems during inactivity, the concept of Heartbeats [1] could be
implemented. The client, as well as the server, sends control messages
to each other at defined intervals; if they have not received such a
control message for a while, they know that the other endpoint has
terminated abnormally, or that a connection error has occurred. If the
server registers the client’s Heartbeats as missing, it automatically
deregisters the client. If, on the other hand, the client registers the
server’s Heartbeats as missing, it should try to reconnect; if this fails,
it should check if the server can be pinged, so that it can give the user
accurate information about the problem.

While the errors described above should be the most likely, it is possible
that others will occur.

Proof-of-Concept
The Exchange Component is only a small part of the client. The task
was to write an implementation of the interfaces in the package
tdb.sys.exchange.

Client
The most important object of the SOAP Communication Layer is
SOAPServer in the server package, the class to which all the calls to
SOAPExchange are forwarded. It acts as a proxy of the application
server, hiding all the details of the communication from the application
client. This is the place where the SOAP methods on the application
server are called.

The SOAP server in the application client is implemented using Jakarta
Tomcat and Apache Axis. The service itself is implemented in a single
class. All this does, is to push the incoming message into the
TDBUpdateMessageQueue after removing its brackets. To allow
UpdateListener to get a reference on TDBUpdateMessageQueue, Up-
date became a Singleton, ensuring that it will only be instantiated once,
and that every object running in the same Java VM can easily get a
reference on it.

Server
To minimise the number of complex types to be sent across the wire,
methods which expect “unnecessary” complex types have been wrapped.
Only the ID of these objects is passed to the wrapper method, which
fetches the appropriate object to pass it on to the original method.

The last change on the server side was to distinguish between clients
connected via Caché JDBC and clients connected via SOAP to inform
them about changes in opened documents. The clients connected via
Caché JDBC are informed as they were previously, while the ones
connected via SOAP are informed by the SOAPUpdater: This class calls
the “processMessage” method of the SOAP server embedded into the
client.

Automatic Bidirectional Communication
The following part traces in detail the chain (see Figure 3) of calls caused
by a character insertion, in order to understand the whole process more
fully.

Startup
On application startup, SOAPExchange is instantiated and initialised.
It initialises the SOAPServer, which creates a new session on the server
(NewCSessionByID, the wrapper method for NewCSession, will set the
session’s “ClientConnection” attribute to “SOAP”), and Update. Up-

Figure 3. Chain of Calls Caused by the Insertion of a Character

Managing Modern Organizations With Information Technology 387

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

date instantiates the classes needed for the update system, and then starts
Tomcat to wait for messages about changes in opened documents.

Operations: The behaviour of the file operations (creating, deleting,
opening or closing) have remained the same as in the original implemen-
tation of the Collaborative Editor client [4].

The process of inserting a character into a document is not trivial, since
the change has to be propagated to other clients that have the same
document opened. This process in the SOAP implementation differs
remarkably from the one in the JDBC implementation.

Editing a Document: The user presses a key, and the insertChars()
method of SOAPExchange is called on. It is passed on to SOAPServer,
the class that now calls InsertCCharsByID() on the server via SOAP.
InsertCCharsByID() is the wrapper method for InsertCChars(); it opens
the CDocument and the CSession objects with the IDs passed from the
client and calls the traditional InsertCChars(). If everything is all right,
InformInsert() from the ServiceRoutines is called, which starts a new
thread with GenericMessage() to inform the other clients about the
change. For the clients connected using SOAP, this is done by
SOAPUpdater.sendMessage(). It calls the processMessage() of the
client’s UpdateListener, the one that is running as embedded SOAP
server. The SOAP-specific part of the process ends with the pushing of
the received message into the TDBUpdateMessageQueue.

Shutdown: Unlike the JDBC-based implementation which uses stateful
connections, the SOAP implementation doesn’t need to close any
existing connections. The Shutdown process is reduced to deleting the
exist ing session object from the server, together with
“DocumentSessions” that might still exist at that time.

Benchmarks
When comparing the behavior of the Collaborative Editor client
connected via JDBC with one connected via SOAP, the overhead
introduced by SOAP notably delays the real-time bidirectional commu-
nication between the client and the server. In order to be able to estimate
the performance loss caused by this overhead, we have indicated the time
taken by some regularly used methods in the table below.

As illustrated, JDBC outperforms SOAP by a factor of 10.7 to 90.5. This
is the price to be paid for the advantages SOAP has to offer. The figures
are put into perspective if we consider that opening and closing a
document are not used as often as reading or writing a character, where
the factor only ranges from 10.7 to 27.4.

CONCLUSION
The implementation illustrates the advantages of SOAP: the tight
coupling between the client and the server has been loosened, and the
already existing platform independence has been upgraded to language
independence. The Collaborative Editor is still usable, although it reacts
with a small delay. Of course, the overhead introduced with SOAP
restricts the scalability of TeNDaX.

To improve the usability of the SOAP-enabled operating systems for ad-
hoc automatic real-time bidirectional communication the primary
target will be user interaction and failure tolerance.

REFERENCES
[1] M. K. Aguilera, W. Chen, and S. Toueg, “A timeout-free failure

detector for quiescent reliable communication,” presented at 11th
International Workshop on Distributed Algorithms, WDAG’97,
Saarbrucken, 1997.

[2] H. Attiya and J. Welch, Fundamentals, Simulations, and Ad-
vanced Topics: McGraw-Hill, 1998.

[3] D. Barkai, Peer-to-Peer Computing: Technologies for Sharing and
Collaborating on the Net: Intel Press, 2002.

[4] T. B. Hodel and K. R. Dittrich, “A collaborative, real-time insert
transaction for a native text database system,” presented at
Information Resources Management Association (IRMA 2004),
New Orleans (USA), 2004.

[5] T. B. Hodel and K. R. Dittrich, “Concept and prototype of a
collaborative business process environment for document process-
ing,” Data & Knowledge Engineering, vol. Special Issue: Collabo-
rative Business Process Technologies, 2004.

[6] L. Lamport, Lynch, N., “Distributed computing: Models and
methods,” in Handbook of Theoretical Computer Science: Elsevier
Science Publishers, 1990, pp. 1158-1199.

[7] A. Oram, Peer-to-Peer, Harnessing the Power of Disruptive Tech-
nologies: O’Reilly, 2001.

Method Name Cac hé
JDBC

SO AP Performance
Loss Fac tor

O pen
CDoc ument

(3,4,9) (80,194,467) 48.5

Clos e
CDoc ument

(2,2,9) (167,181,231) 90.5

G etCChars (3,19,57) (173,203,234) 10.7
Ins ertCChars (9,10,24) (217,274,833) 27.4

 [JDBC, SOAP: The numbers printed are milliseconds (minimum,
median, and maximum) of 10 measurements; Performance Loss Factor:
med(JDBC)/med(SOAP)]

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/embedded-soap-server-operating-

system/32617

Related Content

A Novel Call Admission Control Algorithm for Next Generation Wireless Mobile Communication
T. A. Chavanand P. Saras (2017). International Journal of Rough Sets and Data Analysis (pp. 83-95).

www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-

communication/182293

Amplifying the Significance of Systems Thinking in Organization
Mambo Governor Mupepi, Sylvia C. Mupepiand Jaideep Motwani (2018). Encyclopedia of Information

Science and Technology, Fourth Edition (pp. 551-562).

www.irma-international.org/chapter/amplifying-the-significance-of-systems-thinking-in-organization/183770

The Choice of Qualitative Methods in IS Research
Eileen M. Trauth (2001). Qualitative Research in IS: Issues and Trends (pp. 1-19).

www.irma-international.org/chapter/choice-qualitative-methods-research/28257

Detection of Shotgun Surgery and Message Chain Code Smells using Machine Learning

Techniques
Thirupathi Guggulothuand Salman Abdul Moiz (2019). International Journal of Rough Sets and Data

Analysis (pp. 34-50).

www.irma-international.org/article/detection-of-shotgun-surgery-and-message-chain-code-smells-using-machine-

learning-techniques/233596

Language-Action Perspective (LAP)
Karthikeyan Umapathy (2009). Handbook of Research on Contemporary Theoretical Models in Information

Systems (pp. 113-130).

www.irma-international.org/chapter/language-action-perspective-lap/35827

http://www.igi-global.com/proceeding-paper/embedded-soap-server-operating-system/32617
http://www.igi-global.com/proceeding-paper/embedded-soap-server-operating-system/32617
http://www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-communication/182293
http://www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-communication/182293
http://www.irma-international.org/chapter/amplifying-the-significance-of-systems-thinking-in-organization/183770
http://www.irma-international.org/chapter/choice-qualitative-methods-research/28257
http://www.irma-international.org/article/detection-of-shotgun-surgery-and-message-chain-code-smells-using-machine-learning-techniques/233596
http://www.irma-international.org/article/detection-of-shotgun-surgery-and-message-chain-code-smells-using-machine-learning-techniques/233596
http://www.irma-international.org/chapter/language-action-perspective-lap/35827

