
Copyright © 2023, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

175

DOI: 10.4018/978-1-6684-4785-7.ch006

ABSTRACT

Device drivers are an elementary part of the Linux kernel and comprise roughly
2/3 of the project’s lines of code. Even though the fraction of device driver code
in a conventional operating system (OS) can vary, some of these components are
essential for system functioning. In addition, the Linux kernel is used in a wide
range of applications, from cloud service providers to embedded systems and
supercomputers. If GNU/Linux systems should be trustworthy to justify running
them in those environments, then testing the kernel is fundamental. However, since
device drivers are designed to interface with hardware, conventional test approaches
may not suit the occasions when devices are unavailable at test time. This raises
the question: How are device drivers tested?

Trusting Critical Open
Source Components:

The Linux Case Study

Marcelo Schmitt
Universidade de Sao Paulo, Brazil

Paulo Meirelles
 https://orcid.org/0000-0002-8923-2814

Universidade de Sao Paulo, Brazil

176

Trusting Critical Open Source Components

INTRODUCTION

Trusting Critical FOSS Components

The present chapter revolves around the theme of dependability in Free and Open
Source Software (FOSS) systems, with a specific focus on Linux. The study highlights
the significance of the FOSS infrastructure that underpins a substantial portion of the
software and online systems we rely on for both business and personal purposes. The
examination centers on Linux device drivers, serving as a representative case study
to raise questions about the level of trust that can be placed in the FOSS ecosystem.
The material conducts an exhaustive analysis of the software testing methodologies
utilized by the Linux project to assess the quality and reliability of device drivers.
This discussion sheds light on the transparency inherent in the FOSS model, as it
offers a unique opportunity to inspect and scrutinize the internal workings of the
software. This openness stands in contrast to the limited ability to examine proprietary
products that drive mission-critical systems, which lack similar transparency.

Linux, as an enduring project, forms the foundation of a substantial portion
of today’s modern computational infrastructure, a fact that underscores its
importance and widespread adoption. The success of Linux is attributed, in part,
to the implementation of innovative business models that facilitate collaboration
between individuals and organizations with diverse perspectives. This collaborative
environment enables stakeholders to leverage shared resources while being actively
encouraged to contribute back to the community through money investments and
technological enhancements. The chapter presents a valuable exploration of the
factors contributing to the positive reputation and resilience of the Linux ecosystem,
underscoring the significance of effective strategies that foster cooperation and
mutual support within the FOSS community.

Device Drivers

Device drivers are an elementary part of the Linux kernel and comprise roughly 2/31
of the project’s lines of code. Even though the fraction of device driver code in a
conventional operating system (OS) can vary, some of these components are essential
for system functioning. In addition, the Linux kernel is used in a wide range of
applications, from cloud service providers to embedded systems and supercomputers
(Corbet and Kroah-Hartman, 2017). If GNU/Linux systems should be trustworthy to
justify running them in those environments, then testing the kernel is fundamental.
However, since device drivers are designed to interface with hardware, conventional
test approaches may not suit the occasions when devices are unavailable at test time.
This bares the question: how are device drivers tested?

23 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/trusting-critical-open-source-

components/326642

Related Content

Software Licenses, Open Source Components, and Open Architectures
Thomas A. Alspaugh, Hazeline U. Asuncionand Walt Scacchi (2015). Open Source

Technology: Concepts, Methodologies, Tools, and Applications (pp. 1-22).

www.irma-international.org/chapter/software-licenses-open-source-components-and-open-

architectures/120904

Open Source Software and the Corporate World
Sigrid Kelsey (2007). Handbook of Research on Open Source Software:

Technological, Economic, and Social Perspectives (pp. 570-577).

www.irma-international.org/chapter/open-source-software-corporate-world/21217

Other Agile Methods
Barbara Russo, Marco Scotto, Alberto Sillittiand Giancarlo Succi (2010). Agile

Technologies in Open Source Development (pp. 75-89).

www.irma-international.org/chapter/other-agile-methods/36498

Open Source and Commercial Software Platforms: Is Coexistence a

Temporary or a Sustainable Outcome?
Eric Darmonand Dominique Torre (2009). International Journal of Open Source

Software and Processes (pp. 67-80).

www.irma-international.org/article/open-source-commercial-software-platforms/4090

Strategies for Improving Open Source Software Usability: An Exploratory

Learning Framework and a Web-based Inspection Tool
Luyin Zhao, Fadi P. Deekand James A. McHugh (2009). International Journal of

Open Source Software and Processes (pp. 49-64).

www.irma-international.org/article/strategies-improving-open-source-software/41948

http://www.igi-global.com/chapter/trusting-critical-open-source-components/326642
http://www.igi-global.com/chapter/trusting-critical-open-source-components/326642
http://www.igi-global.com/chapter/trusting-critical-open-source-components/326642
http://www.irma-international.org/chapter/software-licenses-open-source-components-and-open-architectures/120904
http://www.irma-international.org/chapter/software-licenses-open-source-components-and-open-architectures/120904
http://www.irma-international.org/chapter/open-source-software-corporate-world/21217
http://www.irma-international.org/chapter/other-agile-methods/36498
http://www.irma-international.org/article/open-source-commercial-software-platforms/4090
http://www.irma-international.org/article/strategies-improving-open-source-software/41948

