IDEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA

1TB12847

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

Design Interactive Applications
Using ODbject-Oriented Petri Nets in
Software Components

Jaime Mufioz Arteaga & Francisco Alvarez Rodriguez
Univer. Auténoma de Aguascalientes Av. Universidad # 940, CP 20100, Aguascalientes, Mexico, {jmunozar, fjalvar}@correo.uaa.mx

Gustavo Rodriguez Gémez, Coordinacién de Ciencias Computacionales del INAOE, Calle Luis Enrique Erro No. 1,
Tonantzintla, Puebla, 72840, Mexico, grodrig@inaoep.mx

Héctor Perez Gonzalez, Facultad de Ingenieria de la Univer. Autbnoma de San Luis Potosi, Av. Dr. Manuel Nava No. 8,
78290 Zona universitaria SLP, Mexico, hectorgerardo@acm.org

ABSTRACT

An interactive application requires a high rate of maintenance and
reutilization of software in order to guide the large diversity of user tasks.
Software components have proven to be effective covering these
requirements for the interactive applications at implementation level.
However the current specification techniques for the software compo-
nents are limited to design the dynamics aspects of an interactive
application, such as the dialogue of user-driven interfaces. This work
proposes a formalism based on object-oriented Petri nets which it is
possible to specify the behavior and the structural aspects of the
component based interactive application. The goal is offer to designer
a formal specification supporting the functionality and the usability
factors independently of any language programming or any graphic
toolkit. In addition, the designer can make an easy maintenance and
reuse of software component models, improving in this way the
communication with the people involved with the software develop-
ment.

1. INTRODUCTION

An interactive application requires a high rate of maintenance and
reutilization of software in order to aid the user in accomplishments
throughout the user interface. Software components have proven to be
effective to develop interactive application at implementation level.
For example a software component can represent the software abstrac-
tions the application and the support to user task throughout the
graphical user interface. Here we will adopt the Szyperski“s definition
[2]: "A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies. A software
component can be deployed independently and is subject to composi-
tion by third parties’.

Although a lot of work has recently been devoted to the formal
specification for software components, the interactive applications
have received much less consideration. Currently a designer doesn’t have
a specification technique for design of dynamics aspects for interactive
applications using software components, such as the dialogue of user-
driven interfaces [3] and [4]. We found that it is not all clear the user
interface specification of a software component what are the services
to support the user actions and the order in which these actions invoke
enable(disable) other services.

This work proposes the use of the object oriented and the Petri nets in
order to specify respectively the structure and the behavior of user

interfaces. The goal is to extend the specification of software compo-
nent approach enable to capture the user needs independently of any
language programming or any graphic toolkit. We first present the
architectural model used in general for an interactive application. We
asses the rational of the Petri net in such perspective. We then present
a case study illustrating the usability and utility factor are taken into
account in our approach. Lastly, the current work is compared with
related work using a set of criteria relatives to the forma methods of
interactive applications.

2 PROBLEM STATEMENT

A software component is a software unit for a third-party composition;
the composition is realized through the set of specified interfaces. A
software component can represent the software abstractions of an
interactive application and it supports the user services throughout the
graphical user interface. Software components are like black boxes
where the programmer generally defines the internal part by a set of
resources, data and object-oriented classes and the external part is
represented by a set of services enables to user’s actions (see figure 1).

In addition, a software component offers a mechanism to get informa-
tion about its structure. This self-descriptiveness is achieved by intro-
spection, thisis a low level mechanism and the information provided for
the services is not useful to support the user task. The user task is
facilitated by the graphical user interface considered as a dynamic part
of an interactive application. However, a large number of specification
techniques for the software components don’t support the design the
dynamics aspects of an interactive application, such as the dialogue of
user-driven interfaces [1] [3] [4]. We found that it is not all clear in the
interface of a software component what are the services to support the
user actions and the order in which these actions invoke enable(disable)
other services. This is a common weak point of the software component
technologies such as the ActiveX, COM and Java Beans. For example
the interface of a JavaBeans is represented by the archive manifest which
offers only a list of object-oriented classes containing the component.
It is necessary to be an experienced programmer in order to apply the
introspection mechanism and at the same time it is necessary to
interpret the information about the events, services and properties of
the underlying component. In addition, the designer have a lot of
difficulties to reuse the information related to user interactions such as
the services, and the data offered to user throughout the graphical user
interface.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 1. Graphical representation of a software component

Iterfare

ServicelN()

Repository

Rescurces

Figure 2. Architectural model for interactive software components
(modified of [3])

Dialogue Presentation

Core function TL

3. OBJECT-ORIENTED PETRI NETS IN INTERACTIVE
SOFTWARE COMPONENT

In order to present our approach to the design of interactive application,
we will relate it to widely acknowledged Seeheim model. This conceptual
architecture model for interactive application describes the user inter-
faces as structured in three modules: the presentation, the dialogue and
the core function (see Figure 2).

1. The presentation module handles the lexical aspects of the
interaction such in input as well in output.

2. The dialogue control module handles the syntactic aspects of the
interaction and is responsible for the dynamic of the system.

3. The core function provides a semantic interpretation of the

information received for the dialogue component.

3.1 Integrating Object-Oriented Petri Nets

A software component could be used effectively to code the software
abstractions of an interactive application and specifying graphical user
interface using object-oriented Petri nets. Petri nets come into play very
naturally for the design of the Dialogue component of the Seeheim
model (see figure 2). They allow for an easy description of complex,
concurrent control structures, they offer several structuring construct,
and, for the high-level models, they cleanly integrate the data structure
aspects by allowing tokens to hold structured data.

In our approach, we will consider that (as it is often the case with current
development methods) the presentation component is handled by
specialized tools of the UIMS (User Interface Management System)
category. Moreover, we will consider that the non interactive applica-
tion kernel is designed in an object oriented approach. If this is not the
case (for example the application kernel could be a relational database)
the applications interfaces component will provide the necessary
object-oriented layer

The behavior of a interactive software component specifies how it
reacts to external stimuli according to its inner state. This behavior is
described by a high-level Petri net of the component. A Petri net is a
directed bipartite graph whose nodes are either places (depicted as
circles) or transitions (depicted as rectangles). Places and transitions are
connected by arcs. Each place may contain any number of tokens. In
high-level Petri nets, tokens may carry values. In our formalism, tokens

Emerging Trends and Challenges in IT Management 225
may hold conventional values (integer, string, etc.) or references to
other objects in the application. A transition may feature a precondition
that is a Boolean expression that may involve the variables labeling the
input arcs of the transition. A transition is fireable (may occur) if and
only if:

. Each of its input places carries at least one token
. If the transition features a precondition; it exists tokens in the
input.

When a transition is fired, it removes one token from each of its input
places, and sets one token in each of its output places. A transition
features an action part, which may request services from the tokens
involved in the occurrence of the transition, or perform arbitrary
algorithms manipulating the values of tokens.

In this way an iteractive software componente offers a set of services
that define the interface (in the programming language meaning) offered
by the component to its environment. In the case of user-driven
application, this environment may be either the user or other objects
of the application. Each service is related to at least one transition ob
the Petri net, and a service is only available when at least one of its
related transitions is fireable.

3.2 Architectural Consideration

In the architectural Seeheim model a Petri net plays the role of the
Dialogue component (see figure 2). The core function is modeled by the
classes of the tokens flowing in the net. The Presentation component
is made of a set of interactors (widgets) that may display and edit data
(for example text entry fields or radio buttons), or trigger events of
interest to the application (for example menu items or buttons).

The communication between the Dialogue component and the Core
function is thus described both by the flow of tokens in the net and by
the call of tokens methods in the transitions’ actions.

The communication between the Dialogue component and the Presen-
tation component is more complex to describe, since several aspects are
to be taken into consideration:

. The Presentation component influences the dialogue through
the occurrence of events. This occurrence is modelled in the petri
net by special places called event places. The Presentation
component is able to deposit tokens in those event places after
the occurrence of an event. A transition in the petri net may have
at most one input event place. A transition with an input event
place is called an event transition. The very notion of interface
place is made necessary by the fact that a given incoming event
may trigger different actions in the system, according to the
system’s inner state. This is modelled by two or more event
transitions in the petri net sharing a common event place. Those
transitions are therefore in structural conflict, and this indeter-
minism has to be relieved by the structure of the petri net

. Conversely, the state of the Dialogue component (i.e. the
marking of the petri net) influences the Presentation compo-
nent: according to this state, several events may be disabled, and
their associated interactor greyed out. This is described by
associating event transitions to one or several interactors in the
presentation: when a transition is not fireable, all of its associ-
ated interactors are greyed out or disabled.

Lastly, the state of the petri net must be displayed by the presentation.
This is done by associating a rendering action to each place of the petri
net Such actions may call methods of the tokens held in the place in order
to display whatever information is appropriate.

4. CASE STUDY

We propose a case study wich features a interesting behaviour in order
to exemplify the integration of object oriented petri nets in the
interactive software components. The example chosen to illustrate our

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

226 2006 IRMA International Conference

Figure 3. A snapshot of thermostat at start time

Thermostat

X

Figure 4. A snapshot of thermostat at runtime

Thermastat 3

100 -

| SO s R
2 3 8 4

T bvwn Lona b Lows

L=l

g‘
B

approach is a fairly common one: an interactive thermostat taken and
modified of Englander’s book [6].

4.1. Description of the Case Study

The interactive thermostat is a simple application allows users to enter
a temperature percentage using several input elements and to have an
immediate feedback of the percentage on different output elements. The
figure 3 and 4 shows the presentation part of this application.

The input elements are:

. A button “>>" that increments the value of themperature by one
point. This button is not available to the user if the value of
temperature equals 100.

. A button “<<* that decrements the value of themperature by one
point. This button is not available to the user if the value of
temperature equals 0.

The input/output elements are:

. A text widget where the user can type out a new value of
temperature

. A thermometerchart widget that can be directly manipulated by

the user. Using a mouse, the themperature can be modified, first
by pressing the left button of the mouse then by dragging the
mouse to the desired value.

An important feature of the application is that the abstraction (corre-
sponding to the value of the variable themperature) is always consistent
with its various graphical representations. Thus, the value in the text
zone and the graphical value of the thermometerchart always corre-
spond to the same value and each user action on the widgets modifies both
the graphical representations and the abstraction. A static representation
of the application with consistent presentations is shown on figure 3.

Figure 5. Presentation specification of thermostat application

Services Widgets Graphical representation | Events
Start ButtonStart ‘ Click
Stop ButtonStop ‘ i Click
Up ButtonUp Click
Down ButtonDown Click
<<
Key TextZone | 80 Key-Press
StartChange |ThermometerChart 100-= Mouse-Move
a0=
Changing a0= Mouse-Down
EndChange 0= Mouse-Up
20*;
[ul -

Figure 6. Dialogue specification of thermostat application.

Idle

T1‘ Start | [Stop ‘TZ

Changing
t=P_Calclnput(x,y)

Dragging

startChange| [EndChange
T7 T8

Not Dragging

4.2. Design of Thermostat Interactive Application
One of the goals is modeling in the software component interface of the
interactive thermostat the user actions in order to make formal and non
ambiguous such natural language informal requirements.

The presentation module of Seeheim model is specified mapping the user
services with the interactive objects of graphical user interface as the
figure 5 shown.

The dialogue module is represented by the object oriented Petri net of
figure 6, this Petri net specifies that at the beginning, the application
is stopped and the user can only start it by pressing the Start button. Then
all the interactions described above are available until the user presses
the Stop button that stops the application and puts it back into the initial
state. This initial state is represented in figure 3.

In this case study the Core function module of our thermostat applica-
tion is modeled by a class named Temperature. The declaration of this
class feature a constructor, used to generate a new instances.

The code for this constructor should query the various widgets in the edit
zone to gather the values for the new Customer’s attributes. This code
is not shown here for it is highly dependent on the graphical toolkit
providing the user interfaces. The constructor should also take care of
inserting the new instance in the repository of software component.
Conversely the destructor called on object deletion, should take care of
removing the instances from the persistence storage offered by the
repository. Lastly, the class features a method called Render, whose
purpose is to display the values of the instance’s attributes in the window.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of ldea Group Inc. is prohibited.

Figure 7. OO class Temperature as specification of core function of
thermostat application

Class Temperature f{
Public:
Temperature ()
~ Temperature ()
SetTemperature (Real)
Real GetTemperature ()
void Render () const
private:
aTemperature: Real

}

5. FORMAL VERIFICATION

Formal verification aims at checking properties over a formal specifi-

cation of a system. Some generic properties are of great interest for

system specification and Petri nets theory offers predefined techniques
for checking them. Such properties are liveness, boundedness and
reinitialisability.

. A system is live, if for every state of the system, there exists a
sequence of action that can trigger any given action of the
system. That is to say that there is no dead branch in the system.

. A system is bounded if there is no production or consumption
of resources during the activity of the system. This is an
important property as it guaranties the fact that the system does
not wear, i.e. its actual use does not jeopardise its future use .

. A system is reinitialisable if for any state the system can be in,
it is always possible to find a sequence of actions that will set the
system back in its initial state. This property relates to the
previous although they are orthogonal [7], i.e. a system can be
reinitialisable and not bounded and reciprocally.

5.1 Marking Graph

The marking graph of a Petri net is an automaton and can easily be
automatically generated from a Petri net modelling a system with a finite
number of state.

Most of the properties that one might be interested to check over a Petri

net model, can be checked on the marking graph of this Petri net.
However, when large-scale the marking graph can be rather difficult. This
is not the case for the thermostat application and the marking graph
corresponding to the Petri net of figure 6 is represented on figure 7.

As the marking graph is finite, the related Petri net model is bounded.
It can be easily seen that the Petri net is live as every action can be
reached from any state of the marking graph. The same reasoning can
be applied in order to prove that the Petri net is reinitialisable.

Figure 8. Marking graph corresponding to the Petri net of figure 6

Stop Start

Up,Down, Ke
o))
EndCharge StartChange

Up, Down,
01110 Key, Changing

Sto
Stakt P

Emerging Trends and Challenges in IT Management

Table 1. Interactive aplicaciéon specification technique

227

Behavi or al aspects Structur al aspects
1CO[1] High leve Petri nets Objects
AOCE[8] Aspects Objects
Tadeus [5] High leve Petri nets Interaction Table
ExecutionM odd [9] SateTransition diagram Object-oriented component
DiaM ODL[4] SateChart Objects
1SC High leve Petri nets Object-oriented softwar e components

6. RELATED WORK

This section presents a comparison of our approach with other works
wich has purposed specfication techniques to design interactive appli-
cations.

All the works register in the previous table rely on well on mathematical
well found approaches; they attempt to take into account both the
dynamic and the structure aspects of an interactive application. Note
that our approach called “Interactive Software Component” (ISC) is
characterized by the integration of Petri nets into software components
in order to design interactive applications.

7. CONCLUSIONS

This paper proposes integrate the object-oriented Petri the software
component for interactive application in order to specify indepen-
dently of any language programming the graphical user interface. In
addition, we show how Petri nets could be used only for the specification
phase, allowing to state in a concise manner complete and non ambiguous
requirements for the control structure of this type of applications. Some
of the interaction aspects in terms of usability factors have been
exemplified on a meaningful case study. The designer can make an easy
maintenance and reuse of software component model, improving in this
way the communication with the people involved with the software
development.

Finally, one expectation of the present work is to specify learning
multimedia software component taking into account the combination
of text, icons, sound and the visual animation feedback.

8. REFERENCES

[1] Bastide, Rémi and Palanque, Philippe. Conformance and Com-
patibility between Models as Conceptual Tools for a Consistent
Design of Interactive Systems. CHI 99 workshop on Tool
Support for Task-Based User Interface Design. 99.

[2] S. Clemens, Component Software — Beyond Object-Oriented
Programming, Addison-Wesley and ACM Press, 2002

[3] Dix, Alan J. , Russell, Beale, and Wood, Andy. Architectures to
make Simple Visualisations using Simple Systems. Advanced
Visual Interfaces - AV12000. 51-60. 2000. Italy, ACM Press.

[4] Hallvard, Traetteberg. Dialog modelling with interactors and
UML Statecharts A hybrid approach. Design, Specification and
Verification of Interactive Systems 2003. 2003. Springer-Verlag.

[5] Schlungbaum, Egbert. Support of Task-based User Interface
Design in TADEUS. CHI’'98 Workshop . 1998.

[6] R. Englander, Developing Java Beans Anonymous O'reilly,
1999
[7] Murata T. Petri nets: properties, analysis and applications.

Proceeding of the IEEE 1989;77 (4).

[8] Grundy, J.C. Multi-perspective specification, design and imple-
mentation of software components using aspects, in Interna-
tional Journal of Software Engineering and Knowledge Engineer-
ing, Vol. 20, No. 6, December 2000.

[9] P. H. Frohlich and M. Franz. Stand-alone messages: A step
towards component-oriented programming languages. In
J.Gutknecht and W. Weck, editors, volume 1897 of Lecture
Notes in Computer Science, 2000. Springer-Verlag.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/design-interactive-applications-using-
object/32749

Related Content

Using Maturity Model to Govern Information Technology
Asim El-Sheikhand Husam A. Abu Khadra (2009). Utilizing Information Technology Systems Across
Disciplines: Advancements in the Application of Computer Science (pp. 90-109).

www.irma-international.org/chapter/using-maturity-model-govern-information/30720

New Technique to Detect CNP Fraudulent Transactions

Adnan M. Al-Khatiband Ezz Hattab (2009). Utilizing Information Technology Systems Across Disciplines:
Advancements in the Application of Computer Science (pp. 67-77).
www.irma-international.org/chapter/new-technique-detect-cnp-fraudulent/30718

An Empirical Analysis of Antecedents to the Assimilation of Sensor Information Systems in Data
Centers

Adel Alaraifi, Alemayehu Mollaand Hepu Deng (2013). International Journal of Information Technologies
and Systems Approach (pp. 57-77).
www.irma-international.org/article/empirical-analysis-antecedents-assimilation-sensor/75787

Direct Execution of Design Patterns
Birol Ayguin (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 5887-5896).
www.irma-international.org/chapter/direct-execution-of-design-patterns/113046

Interpretable Image Recognition Models for Big Data With Prototypes and Uncertainty

Jingqi Wang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).
www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-
uncertainty/318122

http://www.igi-global.com/proceeding-paper/design-interactive-applications-using-object/32749
http://www.igi-global.com/proceeding-paper/design-interactive-applications-using-object/32749
http://www.irma-international.org/chapter/using-maturity-model-govern-information/30720
http://www.irma-international.org/chapter/new-technique-detect-cnp-fraudulent/30718
http://www.irma-international.org/article/empirical-analysis-antecedents-assimilation-sensor/75787
http://www.irma-international.org/chapter/direct-execution-of-design-patterns/113046
http://www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-uncertainty/318122
http://www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-uncertainty/318122

