
264 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Specifying Refactorings as
Metamodel-Based Transformations

Claudia Pereira, INTIA, Departamento de Computación Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil - Argentina, cpereira@exa.unicen.edu.ar

 Liliana Favre, INTIA - Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil - Argentina, & CIC, Buenos Aires, lfavre@exa.unicen.edu.ar

ABSTRACT
The Model Driven Architecture (MDA) is facing a paradigm shift from
object-oriented software development to model-centric development.
MDA distinguishes at least three different kinds of models: Platform
Independent Model (PIM), Platform Specific Model (PSM) and Imple-
mentation Specific Model (ISM). With the MDA approach, some crucial
points are the refactoring techniques that allow model transformations
leaving their behavior unchanged but enhancing some non-functionality
quality factors. In this paper we propose a uniform treatment of
refactorings at levels of PIMs, PSMs, and ISMs. We define refactorings
as metamodel-based transformation contracts that can be used to
validate and test transformations.

1 INTRODUCTION
The Model Driven Architecture (MDA) is an initiative proposed by the
Object Management Group (OMG) to model-centric software develop-
ment (MDA, 2003). MDA promotes the creation of abstract models that
are developed independently of particular platforms and then automati-
cally transformed by tools into models or code for specific platforms or
technologies. It distinguishes at least three different kinds of models:
Platform Independent Model (PIM), Platform Specific Model (PSM)
and Implementation Specific Model (ISM). A PIM is a model that
contains no reference to the platforms that are used to realize it. A PSM
describes a system in the terms of the final implementation platform
e.g., .NET or J2EE. An ISM refers to components and applications.

A Model Driven Development (MDD) is carried out as a sequence of
model transformations. We can distinguish two types of transforma-
tions to support model evolution from PIMs to ISMs: refinements and
refactorings. A refinement is the process of building a more detailed
specification that conforms to another that is more abstract. On the
other hand, a refactoring means changing a model leaving its behavior
unchanged, but enhancing some non-functionality quality factors such
as simplicity, flexibility, understandability and performance.

Refactoring is a crucial point in model evolution. Although the most
effective forms of refactorings are at the design levels (e.g, PIMs or
PSMs), MDA-based Case tools provide limited facilities for refactoring
only on source code through an explicit selection made by the designer
(CASE UML, 2005). In this light, we propose a metamodeling technique
to define refactorings at different abstraction levels in a uniform way.
A transformational system based on behavior-preserving model-to-
model transformations was defined. To reason about correctness and
robustness we propose to specify refactorings as OCL contracts that are
based on metamodels capturing common properties to a family of
refactorings.

This paper is structured as follows. Section 2 provides some background
on refactoring in the MDD context. Section 3 exemplifies rules to
restructure models at levels of PIMs, PSMs and ISMs. Section 4 discusses
how to specify model-to-model transformations as OCL contracts.

Section 5 considers related work. Finally, in Section 6 conclusions and
future work are given.

2 REFACTORING AND MDD
Key to MDA is the importance of models in the software development
process. MDA defines a framework that separates the specification of
the system functionality from its implementation on a specific plat-
form. MDA distinguishes different kinds of models:

• Platform Independent Model (PIM), a model with a high level
of abstraction that is independent of any implementation
technology.

• Platform Specific Model (PSM), a tailored model to specify the
system in terms of the implementation constructs available in
one specific implementation technology.

• Implementation Specific Model (ISM), a description (specifica-
tion) of the system in source code.

A model driven development is carried out as a sequence of model
transformations that includes at least the following steps: construct a
PIM that provides a computing architecture independent of specific
platforms; transform the PIM into one or more PSMs, and derive code
directly from the PSMs (MDA, 2003; Kleppe et al., 2003).

One of the main key issues behind the Model-Driven Development is
that all artifacts generated during software development are represented
using metamodeling languages. In MDA, they are expressed as a
combination of UML class diagrams and OCL constraints (UML, 2005;
OCL, 2005). The 4 main core metamodeling constructs are classes,
binary associations, data types and package.

The transformations between models are described relating each ele-
ment of the source model to one or more elements of the target model
at metamodel level. In other words, relating the metaclass of the element
of the source model with the metaclasses of the element of the source
model. The models to be transformed and the resulting models of the
transformations will be instances of the corresponding metamodel. Fig.
1 shows the relations between PIMs, PSMs and ISMs. The following
types of transformations can be distinguished:

• Refactoring. It is applied to a model in a given level generating
a new restructured model in the same level (PIM to PIM, PSM
to PSM, ISM to ISM).

• PIM to PSM Refinement. It describes how a PIM that is an
instance of a UML-Metamodel is transformed into a PSM that
is an instance of a specialized metamodel for a specific platform.

• PSM to ISM Refinement. It describes how a PSM is transformed
into code (which is an instance of UML Metamodel for a
platform and specific language technologies).

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12817

Emerging Trends and Challenges in IT Management 265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3 MDA-BASED REFACTORINGS
Refactoring is a powerful technique when it is repeatedly applied to a
model to obtain another one with the same behavior. A transformational
system for refactoring UML static models is proposed. The goal is to
provide support for small refactorings by applying semantics-preserv-
ing transformation rules. Transitions among versions are made accord-
ing to precise rules based on the redistribution of classes, variables,
operations and associations across the diagram in order to facilitate
future adaptations and extensions.

We define a library of refactorings that classifies them at PIM, PSM and
ISM levels. Section 3.1 informally describes the system of transforma-
tion rules for refactoring models at different abstraction levels.

3. 1 Transformation Rules
This section shows examples of transformation rules applied at different
levels, PIMs (3.1.1), PSMs (3.1.2.) and ISMs (3.1.3.). We use textual
and diagrammatic descriptions to describe each example of refactoring.

3. 1. 1 Examples of PIM Refactorings
Adding a transitive association: Given an association between classes A
and B and an association between classes B and C, an association may be
derived between A and C, determining the appropriate association type,
the multiplicities and the navigability of each association end. (Whittle,
2002)

Substitution of an association: Given an association a, it may be
substituted with a less constrained association of the same name, i.e., in
any association a, an association-end E with multiplicity mult1 may be
substituted with an association-end E with multiplicity mult2, where
mult1 ⊆ mult2. (Evans, 1998)

Joint of unidirectional associations: Two unidirectional associations
with navigability in opposite direction may be joined in a plain
bidirectional one (Kollmann & Gogolla, 2001).

Adding an association class: Given a class that associates with other two
classes, with association ends with the other classes with multiplicity
equal to 1, it may be transformed to an association class.

3. 1. 2 Examples of PSM Refactorings
Folding: It joins two classes which have a direct inheritance relationship
obtaining a new class gathering the behavior of both. The goal is to reduce
the level of a class hierarchy in those cases where there is no particular
interest in the behavior of a base class.

Abstraction: It divides the behavior of a class generating two classes
which maintain a direct inheritance relationship. By the application of
this rule, a new base class can abstract the more general behavior
identified inside another class.

Union: It gathers two classes without inheritance relationship to each
other in a new one. This rule can be useful to group behavior and to reduce
the multiple inheritances.

Extract Composite: It extract a superclass that implements the Compos-
ite, when subclasses in a hierarchy implement the same Composite.
(Kerievsky, 2004)

3. 1. 3 Examples of Code Refactorings
Replace Temp with Query: Given a temporary variable in a method body
that hold in the result of an expression, it may be replaced with a query
method. The expression is extracted into a method. All references to
the expression are replaced. The new method can then be used in other
methods. (Fowler, 1999)

Figure 1. Refactoring in MDD

PIM

PSM

PIM Metamodel

ISM

PIM’

PIM

PSM –J2EE
Metamodel

PSM’-J2EE

PSM-J2EE

PSM –C++
Metamodel

PSM’-C++

PSM-C++

Java Code
Metamodel

Java Code’

Java Code

 C++ Code
 Metamodel

 C++ Code’

 C++ Code

refactoring

is-instance-of

model refinement

metamodel refinement

A

B

C A

B

C

A B
 a

 1 1
A B

 a

 1 0..*

A B

 r1

A B
r2 r1 r2

A

B C

A

B

C
 * *

1
*

 C

 B

 A

 A

 C

 B

 A C B

Parent

A B … … … C

A B

… … …

Parent

Example 3. 1. 1

Example 3. 1. 2

266 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Consolidate Duplicate Conditional Fragments: When a same fragment
of code is in all branches of a conditional expression, the fragment of
code may be moved outside the expression. This makes clearer what
varies and what stays the same. (Fowler, 1999)

Modularization: Given a file containing interface descriptions and
implementations, the rule generates a header file with the interface
descriptions and an implementation file.

4 METAMODELING APPROACH FOR REFACTORINGS
A metamodeling approach to define transformation rules at different
abstraction level is proposed. Metamodel transformations impose
relations between a source metamodel and a target metamodel both
represented as UML class diagrams annotated in OCL. The source
metamodel defines the family of source models to which refactorings can
be applied and the target metamodel characterizes the models that are
generated by conforming an OCL contract.

Refactorings are described by transformation rules that consist of a
name, a set of parameters, a precondition and a postcondition. Each
parameter is a metamodel element. The precondition, which deals with
the state of the model before the transformation, states relations at the
metamodel level between the elements of the source model. The
postcondition, which deals with the state of the model after the
transformation, states relations at metamodel level between the ele-
ments of the source model and a target model. Rules can also include local
operations that are used in preconditions and postconditions. The
application of these rules can generate new elements on the model,
modify or remove existing ones.

The restructuring rules are basic units of transformation, i.e., starting
from them, particular sequences can be built to solve situations presented
in a model which is wanted to improve. These predefined sequences are
denominated restructuring strategies and they were exemplified in
(Pereira et al., 2004).

Next, we define the Extract Composite refactoring (see 3.1.2.) by using
a C++ platform. In Fig. 2 we show a simplified C++ metamodel. The
Extract Composite rule allows extracting a superclass that implements
the Composite. Below, we partially show the Extract Composite trans-
formation as an OCL contract. The Extract Composite refactoring
consists of the following steps: create a Composite; make each child
container (a class in the hierarchy that contains duplicate methods) a
subclass of the Composite and move duplicated methods across the child

containers to the Composite (Kerievsky, 2004). Comments explaining
postconditions are attached following (see Box A).

5 RELATED WORK
The first relevant publication on refactoring was carried out by Opdyke
(1992), showing how functionalities and attributes can migrate among
classes, how classes can be joined and separated using a class diagram
notation (subset of current UML). Roberts (1999) completed this work
describing techniques based on refactoring contracts.

Fowler (1999) informally analyzes refactoring techniques on Java
source code, explaining the structural changes through examples with
class diagrams. Fanta & Rajlich (1998) and Fanta & Rajlich (1999) study
refactoring of C++ code.

Several approaches provide support to restructure UML models. In
(Gogolla & Ritchers, 1998) advanced UML class diagram features are
transformed into more basic constructions with OCL constraints. Evans
(1998) proposes a rigorous analysis technique for UML class diagrams
based on deductive transformations. In (Sunyé et al., 2001) a set of
refactorings is presented and how they may be designed to preserve the
behavior of UML models is explained. Philipps & Rumpe (2001)
reconsider existing refinement approaches to formally deal with the
notions of behavior, behavior equivalence and behavior preservation.
Whittle (2002) investigates the role of transformations in UML class
diagrams with OCL constraints. Mens et al. (2003) provide an overview
of existing research in the field of refactoring. Porres (2003) defines and
implements model refactorings as rule-based transformations. Van Gorp
et al. (2003) propose a set of minimal extensions to UML metamodel,
which allows reasoning about refactoring for all common object-
oriented languages. Thomas (2005) analyses the state of the art in
refactoring and issues such as languages and tool impact on refactoring,
refactoring as meta-programming, refactoring and persistent instances.

Tools are available to automate several refactoring aspects. For ex-
ample, Guru (Moore, 1995) is a fully automated tool to restructure
inheritance hierarchies of SELF objects preserving behavior. Smalltalk
Refactoring Browser (Roberts et al., 1997) is an advanced browser for
VisualWork which automatically carries out transformations which
preserve behavior. There is a tendency to integrate refactoring tools
into industrial software development environments. For example,
Together ControlCenter (TogetherSoft, 2005) applies code refactoring
on user requirements and IntelliJ IDEA (IntelliJ IDEA, 2005) comes
fully equipped with refactoring tools.

Figure 2. A simplified C++ metamodel

Destructor

GeneralizableElement Generalization 1 *
child

1
generalization
*

1 *
parent

1
specialization
*

ModelElement
name : Name
visibility : VisibilityKind

Project
0..*
ownedElement
0..*

DataType

Constuctor

OCLType C++Type

Method

Association

Member

Attribute

AssociationEnd
isNavigable
aggregation
multiplicity

connection
association 1

0..1 otherEnd 0..1

Class

Parameter

Classifier * 0..1
member
*

owner
0..1

1 type 1

type

association participant

Body

Function

* parameter *

returnType

0..1

double basePrice=quantity*itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

method()

double basePrice() {
return quantity*itemPrice; }

if (basePrice() > 1000)
 return basePrice() * 0.95;
else
 return basePrice() * 0.98;

basePrice()
method()

if (isSpecialDeal())
 { total=price* 0.95;
 send(); }
else
 { total=price* 0.98;
 send(); }

method()

if (isSpecialDeal())
 total=price* 0.95;
else
 total=price* 0.98;
send();

method()

File

Header File

Imp File

Example 3. 1. 3

Emerging Trends and Challenges in IT Management 267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Kerievsky (2004) presents a method for pattern-directed refactorings.
Long, Jifeng and Liu (2005) formalize Fowler´s refactorings as refine-
ment laws in a relational calculus.

6 CONCLUSIONS AND FUTURE WORK
This work presents a rigorous approach for the refactoring on UML
static models at levels of PIMs, PSMs and ISMs. Our focus is on behavior-
preserving model-to-model transformations. The main contribution of
this paper is proposing a classification of refactorings at PIM, PSM and
ISM levels and a metamodeling-based refactoring process that allows
users to define refactorings step-by-step across PIM, PSMs and code
levels in a uniform way. Although the set of rules allows doing quite a
number of interesting refactorings, it is limited since it does not focus
on transformations that involve different UML views.

In a Model Driven Development different tools could be used to validate/
verify models at different abstraction levels (PIMs, PSMs, or implemen-
tations). In this direction we propose to formalize UML/OCL metamodels
and refactorings by using the metamodeling notation NEREUS that is
independent of any formal language and can be translated to specific
ones. A detailed description may be found at Favre (2005).

To demonstrate the feasibility of this approach, a prototype assisting
in the refactoring on object-oriented hierarchies in C++ was imple-
mented. The prototype implements a small, rather powerful, set of basic
transformation rules (folding, abstraction, union, factoring). In this
approach, mechanical tasks perform model transformations, verify
conditions of transformation rules and keep track of the development
process (Pereira et al, 2004). The prototype could be refined to be a
practical tool for MDA-based refactoring.

REFERENCES
CASE UML (2005). Available: www.objectsbydesign.com/tools/

umltools_byCompany.html
Evans, A. (1998). Reasoning with UML Class Diagrams. Proceedings of

2nd Workshop on Industrial Strength Formal Specification Tech-
niques. Available: www.cs.york.ac.uk/puml/papers/evanswift.pdf

Fanta, R.; Rajlich, V. (1998). Reengineering an Object Oriented Code.
Proceedings of IEEE International Conference on Software
Maintenance (ICSM’98), 238-246.

Fanta, R.; Rajlich, V. (1999). Reestructuring Legacy C Code into C++.
Proceedings of IEEE International Conference on Software
Maintenance (ICSM´99), 77-85.

Favre, L. (2005). A Rigorous Framework for Model Driven Develop-
ment. In: T. Halpin, J. Krogstie and K. Siau (Eds.). Proceedings
of CAISE´05 Workshops. EMMSAD´05 Tenth International
Workshop on Exploring Modeling Method in System Analysis
and Design Porto, Portugal: FEUP Editions, 505-516.

Fowler, M. (1999). Refactoring: Improving the Design of Existing
Programs. Addison-Wesley.

Gogolla, M.; Richters, M. (1998). Transformation Rules for UML Class
Diagrams. Proceedings of UML’ 98 Workshop, Springer, Berlin,
92-106.

IntelliJ IDEA (2005). Available: www.jetbrains.com/idea/
Kerievsky, J. (2004). Refactoring to Patterns. Addison-Wesley.
Kleppe, A.; Warmer, J.; Bast, W. (2003). MDA Explained. The Model

Driven Architecture: Practice and Promise, Addison-Wesley.
Kollmann, R.; Gogolla, M. (2001). Application of UML Associations

and Their Adornments in Design Recovery. Proceedings of 8th

Working Conference on Reverse Engineering (WCRE 2001),
IEEE, Los Alamitos. Available: doi.ieeecomputersociety.org/
10.1109/WCRE.2001.957812

Long, Q.; Jifeng, H.; Liu, Z. (2005). Refactoring and Pattern-directed
Refactoring: A Formal Perspective. Technical Report 318,
UNU-IIST, P.O.Box 3058, Macau.

MDA (2003). MDA Guide Version 1.0.1 Available: www.omg.org/mda
Mens, T.; Demeyer, S.; Du Bois, B.; Stenten, H.; Van Gorp, P. (2003).

Refactoring: Current Reasearch and Future Trends. Proceedings

Transformation Extract Composite {
parameters

source: C++ Metamodel:: Project
target: C++ Metamodel:: Project
parentClass: C++ Metamodel:: Class
subclasses: Set (C++ Metamodel::Class)

local operations
isConsistentWith (f1: Function, f2: Function): Boolean
-- return true if f1 is consistent with f2:
isConsistentWith (f1, f2) =

-- f1 and f2 reference equivalent attributes,
f1.referencedAttributes �size() = f2.referencedAttributes �size() and
f1.referencedAttributes�forAll (a1 / f2.referencedAttributes�
 exists(a2 /equivalentAttributes(a1,a2)))
-- f1 and f2 have the same number of parameter,
 f1.parameter � size() = f2.parameter � size() and
-- the type of each formal parameter of f1 conforms to the type of the corresponding elements of f2,
Sequence {1..(f1.parameter�size())} �
forAll (index: Integer/ conformTo(f1.parameter�at(index).type,f2.parameter�at(index).type)) and
-- the return type of f1 conforms to the return type of f2 and
conformTo(f1.returnType, f2.returnType)
………………………….

isConsistentInAllSubclasses (f: Function): Boolean
isConsistentInAllSubclasses (f) =

subclasses � forAll(s/ s.member.oclIsTypeOf(Function) � exists(fun/
isConsistentWith(f , fun) or isConsistentWith(fun, f)))

conformTo (c1: Classif ier, c2: Classifier): Boolean
-- return true if the classifier c1(that defines a type) conforms c2.
conformTo (c1, c2) = (c1=c2) or (c1.allParents() � includes(c2))
....................

preconditions
-- subclasses and parentClass are element of source model.
source.ownedElement.oclIsTypeOf(Class) � includes (parentClass) and
source.ownedElement.oclIsTypeOf(Class) � includesAll (subclasses) and

-- subclasses collection contains subclasses of parentClass.
subclasses � forAll(c/ c.generalization.parent � includes (parentClass)) and

-- each class of subclasses has a binary association with parentClass whose association
-- end tie to the subclass is an aggregation
subclasses � forAll (c / c.association.association � exists (a / a.connection � size() = 2 and

a.connection�exists (e/e.participant=c and e.aggregation=#aggregation))) and

-- all subclasses have functions that can be factorized.
subclasses � forAll (c/ c.member.oclIsKindOf(Function) � exists (f/

isConsistentInAllSubclasses(f))) and

-- subclasses collection has at least two classes.
subclasses � size() >= 2 and

postconditions
 --in the target model exists a class, C, so that:

target.ownedElement.oclIsTypeOf(Class) � exists (c /

-- class C is created during Extract Composite transformation.
c.oclIsNew() and

-- C has a parent class with:
c.generalization.parent.oclIsTypeOf(Class) � exists(class/

-- the same name of parentClass,
class.name=parentClass.name and
-- the same generalization class collection of parentClass,

class.generalization.parent.oclIsTypeOf(Class) =
parentClass.generalization.parent.oclIsTypeOf(Class) and

-- the same members of parentClass,
class.member=parentClass.member and
-- and the specialization class collection contains class C and those subclasses of
-- parentClass that not belong to subclasses collection.
class.specialization.child.oclIsTypeOf(Class) � includes(c) and
class.specialization.child.oclIsTypeOf(Class) �
includesAll(parentClass.specialization.child.oclIsTypeOf(Class) ->subclasses)) and

-- C has factorized functions from subclasses.
c.member.oclIsKindOf(Function) � forAll(f/ subclasses � forAll (sub /

sub.member.oclIsKindOf(Function) � exists (fsub/ isConsistentWith(fsub, f)))) and

-- C has factorized association end from subclasses.
c.association � forAll(a/ subclasses � forAll (sub /

sub.association � exists (asub/ equivalentAssociationEnd(asub, a)))) and

-- C has factorized attributes from subclasses.
…………………….
-- for each subclass of C, subc, there is a subclass of subclasses, sub, so that
c.specialization.child.oclIsTypeOf(Class) � forAll (subc/

subclasses� exists (sub/
-- subc and sub have the same name,
subc.name=sub.name and

-- the same child classes,
subc.specialization.child.oclIsTypeOf(Class) = sub.specialization.child.oclIsTypeOf(Class) and

-- subc excludes functions equivalent with those that were factorized to class C,
sub.member.oclIsKindOf(Function) � forAll(f/

c.member.oclIsKindOf(Function) � forAll (fc/
 if (isConsistentWith (f, fc) then
 subc.member.oclIsKindOf(Function) � excludes (f) and

--invocations of f must be consistent with factorized function interface
.……………….

else subc.member.oclIsKindOf(Function) � includes (f)
endif)

-- subc excludes associations equivalent to factorized associations,
sub.association � forAll(as/

c.association � forAll (fas/ if (equivalentAssociation(a,fas)
then subc.association � excludes (as) and

--invocations of as must be consistent with factorized association end.
 ……………….

else subc.association � includes (as)
endif)

-- subc excludes attributes equivalent with those that were factorized to class C
.……………………………

) }

Box A.

268 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of Third Workshop on Language Descriptions, Tools and Appli-
cations (LDTA 2003), 120–130.

Moore, I. (1995). Guru–A tool for Automatic Restructuring of Self
Inheritance Hierarchies, TOOLS USA 1995. Available: http://
selfguru.sourceforge.net/guru.pdf

OCL (2005). UML 2.0 OCL Specification. OMG Adopted Specification
ptc/03-10-14. Available:www.omg.org

Opdyke, W. (1992). Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois, Urbana-Champaign.

Pereira, C.; Favre, L.; Martinez, L. (2004). Refactoring UML Class
Diagrams. Proceedings of 2004 Information Resources Manage-
ment Association International Conference (IRMA 2004), New
Orleans, Louisiana, USA, 506-509.

Philipps, J.; Rumpe, B. (2001). Roots of refactoring, Proceedings of 10th

OOPSLA Workshop on Behavioral Semantics, Florida, USA.
Available: www4.in.tum.de/~philipps/pub/oopsla01.pdf

Porres, I. (2003). Model Refactorings as Rule-Based Update Transfor-
mations. Proceedings of <<UML 2003>>, Lecture Notes in
Computer Science 2863, Springer Verlag.159-174.

Roberts, D.; Brant, J.; Johnson, R. (1997). A refactoring tool for
Smalltalk, Theory and Practice of Object Systems. Available:
http://st-www.cs.uiuc.edu/~droberts/tapos.pdf

Roberts, D. (1999). Practical Analysis for Refactoring, PhD thesis,
University of Illinois.

Sunyé, G.; Pollet, D.; LeTraon; Jézéquel, J. (2001). Refactoring UML
Models, in Proc. UML 2001, Lecture Notes in Computer Science
2185, Springer-Verlag, 134-138.

Thomas, D. (2005). Refactoring as Meta Programming? Journal of
Object Technology. Vol.4, no.1, January-February 2005, 7-11.
Available: http://www.jot.fm/issues/issue_2005_01/column1

TogetherSoft, ControlCenter (2005). Available: www.togethersoft.com
UML (2005). UML 2.0 Superstructure Specification. OMG Adopted

Specification: ptc/03-08-02 Available: www.omg.org.
Van Gorp, P.; Stenten, H.; Mens, T.; Demeyer, S. (2003). Towards

automating source-consistent UML Refactorings. Proceedings
of <<UML 2003>>, Lecture Notes in Computer Science 2863,
Springer Verlag, 144-158.

Whittle, J. (2002). Transformations and Software Modeling Languages:
Automating Transformations.in UML. Proceedings of <<UML
2002>>-The Unified Modeling Language. Lecture Notes in
Computer Science 2460 (eds. J. Jezequel; H. Hussman) Springer-
Verlag, 227-241.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/specifying-refactorings-metamodel-

based-transformations/32759

Related Content

Personalized Course Resource Recommendation Algorithm Based on Deep Learning in the

Intelligent Question Answering Robot Environment
Peng Sun (2023). International Journal of Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/personalized-course-resource-recommendation-algorithm-based-on-deep-learning-in-

the-intelligent-question-answering-robot-environment/320188

Contemporary Reporting Practices Regarding Covariance-Based SEM with a Lens on EQS
Theresa M. Edgingtonand Peter M. Bentler (2012). Research Methodologies, Innovations and Philosophies

in Software Systems Engineering and Information Systems (pp. 166-192).

www.irma-international.org/chapter/contemporary-reporting-practices-regarding-covariance/63263

Feature Selection Methods to Extract Knowledge and Enhance Analysis of Ventricular

Fibrillation Signals
Juan Caravaca, Antonio J. Serrano-López, Emilio Soria-Olivas, José M. Martínez-Martínez, Pablo

Escandell-Monteroand Juan F. Guerrero-Martínez (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 5555-5563).

www.irma-international.org/chapter/feature-selection-methods-to-extract-knowledge-and-enhance-analysis-of-

ventricular-fibrillation-signals/113009

Algebraic Properties of Rough Set on Two Universal Sets based on Multigranulation
Mary A. Geetha, D. P. Acharjyaand N. Ch. S. N. Iyengar (2014). International Journal of Rough Sets and

Data Analysis (pp. 49-61).

www.irma-international.org/article/algebraic-properties-of-rough-set-on-two-universal-sets-based-on-

multigranulation/116046

Radio Frequency Fingerprint Identification Based on Metric Learning
Danyao Shen, Fengchao Zhu, Zhanpeng Zhangand Xiaodong Mu (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/radio-frequency-fingerprint-identification-based-on-metric-learning/321194

http://www.igi-global.com/proceeding-paper/specifying-refactorings-metamodel-based-transformations/32759
http://www.igi-global.com/proceeding-paper/specifying-refactorings-metamodel-based-transformations/32759
http://www.irma-international.org/article/personalized-course-resource-recommendation-algorithm-based-on-deep-learning-in-the-intelligent-question-answering-robot-environment/320188
http://www.irma-international.org/article/personalized-course-resource-recommendation-algorithm-based-on-deep-learning-in-the-intelligent-question-answering-robot-environment/320188
http://www.irma-international.org/chapter/contemporary-reporting-practices-regarding-covariance/63263
http://www.irma-international.org/chapter/feature-selection-methods-to-extract-knowledge-and-enhance-analysis-of-ventricular-fibrillation-signals/113009
http://www.irma-international.org/chapter/feature-selection-methods-to-extract-knowledge-and-enhance-analysis-of-ventricular-fibrillation-signals/113009
http://www.irma-international.org/article/algebraic-properties-of-rough-set-on-two-universal-sets-based-on-multigranulation/116046
http://www.irma-international.org/article/algebraic-properties-of-rough-set-on-two-universal-sets-based-on-multigranulation/116046
http://www.irma-international.org/article/radio-frequency-fingerprint-identification-based-on-metric-learning/321194

