
648 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Building a Methodology for the Design
of Reference Architectures that

Integrates Legacy Systems
Juan Muñoz López, Arévalo Mercado, Instituto Nacional de Estadística, Geografía e Informática, Dirección General de Innovación y

Tecnologías de Información, Av. Héroe de Nacozari Sur #2301, Fracc. Jardines del Parque, Aguascalientes, Ags., 20270,
México, P: (52 449) 9104332, F: (52 449) 9104392, juan.munoz@inegi.gob.mx

Jaime Muñoz Arteaga & Carlos Argelio
Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Av. Universidad #940, Fracc. Campestre, Aguascalientes,

Ags., 20100, México, Phone: (52 449) 9108417, F: (52 449) 9143222, {jmunozar, carevalo}@correo.uaa.mx

ABSTRACT
This work faces two problems originated on the organizational compu-
tational systems environment and proposes a methodology to design a
reference software architecture oriented to facilitate the evolution of
legacy systems and the integration of autonomous applications.

The methodology improves software architectures design process and
adds elements to take advantage of the retroalimentation that comes
from applying architectural models to the development of new systems.
In this way it helps to create a framework that simplifies and reduces
costs of evolution, integration and replacement of software systems.

INTRODUCTION
In an organization commonly are present three problems that affect its
computational environment, they are: evolution and functionality
enhancement of its legacy systems; integration of their systems; and
designing of software architectures to solve the two problems stated
before.

The first two problems begin when an area of an organization builds a
system to solve its specific needs. The solution will be integrated to the
area’s processes and it will work on an autonomous way. During its
lifetime, systems receive a lot of maintenance, first to stabilize them
and later to adapt them to new requirements and changes on its
environment.

Every time that a system receives maintenance, it becomes more
complex. The software will reach a point where no more adaptations can
be made. A system that cannot adapt itself to changes in environment
will inhibit the development of the organization.

A legacy system is that which has received a lot of effort and financial
resources to be maintained on working conditions, but due to its
architecture it’s too hard to adapt to new organization’s needs.

Generally, it’s not easy to replace a legacy system; a lot of issues must
be considered, like: amount of resources invested, how critical is the
process and how much knowledge has people about it, development team
skill level, replacement process costs, etc.

ESTATE OF THE ART

Legacy software evolution
Different purposes can drive changes in a system. Usually, three
strategies have been applied to evolve legacy systems [1, 3]:

1. Software maintenance. Changes are made to fix defects on
software, to improve system’s performance, to add functional-
ity or to adapt it to changes in its environment; but the structure
of the system remains the same.

2. Architectural evolution. The architecture of the system is
modified to enhance its adaptability.

3. Software reengineering. This approach doesn’t add new func-
tionality to a system, nor modifies its architecture, but it alters
its structure to make it easier to understand and to adapt.

Maintenance makes evolve a system, but it also adds complexity. As the
system becomes more unintelligible, more resources and time are needed
to apply new maintenance.

Software reengineering increases maintainability and functionality of a
system; but, benefits of this approach will be narrow if the architecture
is not modified [1, 2]. Architectural evolution increases adaptability, but
it‘s a complex and expensive task.

Systems Integration
Generally, exchanging information among software systems that works
on an autonomous way implies manual reworking. Different factors can
harden this labor, like: multiple platforms, different protocols, hetero-
geneous data and metadata structures, diversity of contexts, domains and
taxonomies, etc.

Heiler [4] defines interoperability as the capacity that distributed system
components have to exchange data and services among them. When a
system has been designed to interoperate, information exchange and
process can get a high efficiency grade. There are different proposals
to create a framework that increase interoperability between systems
[5], but is still needed to develop and architecture to integrate systems,
data and metadata on a holistic, modular and flexible way. This kind of
architecture must allow gradual evolution and replacement of elements
of the integrated system.

Eval and Milo [6] have proposed an architectural model based on
wrappers to homologate and to integrate web applications using XML.
But, their model doesn’t support legacy systems and its scope is reduced
to web applications.

Chiang [7] introduces an architectural model based on CORBA to
integrate legacy software reengineering commercial systems on hetero-
geneous distributed environments. The architecture has been conceived
to integrate systems that are similar and only unifies the final results
from the systems; but it doesn’t provide a mechanism to exchange
information internally.

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12844

Emerging Trends and Challenges in IT Management 649

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Efforts on data integration are relevant to this work too: Federated
databases [8], heterogeneous database management systems [9], archi-
tectures for queries integration [10] and tools for integration from
different structured and unstructured sources [11] shows different
approaches that must be studied and complemented to integrate data and
metadata with different structures and semantics.

Design of Reference Software Architectures
Software architecture gives elements to share a common vision of a
system and to take important decisions about the quality characteristics
that a system will incorporate.

Reference architecture can be described as a meta-architecture that helps
to design software architectures. Reed [12] says that creating reference
architectures from its basis requires of a lot of effort that combines
effective tools, technology and actual approaches of the organization
with a set of best practices, patterns and approaches that in the past has
been successful.

There are some methodologies oriented to design a software architecture
[13, 14, 15, 16] but is still needed a methodology to design reference
software architectures and to evolve them taking advantage of the
retroalimentation obtained when it is applied to make the architectural
model of a new system.

PROPOSALS
We propose a methodology for developing and evolving reference
software architectures. The methodology is focused on designing refer-
ence architectures for systems that integrates legacy and new systems
and provides mechanisms to easier the evolution and replacement of the
system elements.

In figure 1 we describe our proposal. It starts with a validation process
of the required functionality and quality characteristics of the system.
Each requirement will be assigned to a sponsor who will be responsible
of ensuring that it is clearly stated on the architecture.

Non functional characteristics will be stated using a formal model that
will establish the basis of a future measurement of them in the architec-
tural model. Quality requirements will be stated in a checklist and
negotiated by the stakeholders using a method of negotiation, similar to
ATAM [14].

Architectural design team will transform functional and no functional
requirements to architectural elements, and then, depending if exists a
previous reference architecture, they will apply it to make the design
or they will develop a design based on patterns and reference models.

The document and the designed architectural model must be evaluated
by all the stakeholders if it is satisfactory the systems will be constructed
based on it, else the architectural design team must redesign their
proposal.

Once the system has been developed it will be necessary to evaluate how
much the system conforms to the architectural model, variability will
be an important issue to consider when the reference architecture is
created or refined.

If we haven’t had a reference architecture we will apply a process of
analysis and extraction of the reference software architecture. It is
foreseen that practices taken from production lines will be helpful on
this task.

When we have had a reference architecture already, the retroalimentation
mechanism acts as a permanent evolutionary mechanism that helps to
maintain it current and adaptable to environmental changes.

Figure 1. Methodology to design reference software architectures

650 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

CASE STUDY
In order to prove our methodology we propose to apply it to integrate
systems like accounting, sales and inventory systems. Those systems
works on an autonomous way on separate areas, but information
produced for some of them is needed as an input for others; for example:
information produced by sales and inventory systems are an input of the
accounting system.

A lot of manual effort is required to transport and convert information
from one system to other. Also, it’s common that each system must add
new reports and queries to satisfy new needs. This task generally is
accomplished with artisan work using tools like spreadsheets and word
processors.

If an architectural design is made under the methodology that we propose
in this document, it will be established a framework that will easier
integration of the systems.

We have applied the first steps of the methodology and with a design
based on models and patterns we have extracted a model that integrates
different systems as modules and can gradually evolve or replace them.
A process module may use data and functionality of a legacy system and
could replace it on the future with a new version of the system on a
progressive way (see figure 2). The proposed mechanism allows us to
make a smooth migration of data and functionality where the benefits
of an integrated interface and of a modular architecture can be perceived
from the beginning.

CONCLUSIONS AND FUTURE WORK
This work has proved that it has a sound potential to bring elements that
will help to solve the problems related to evolution of legacy systems
and integration of autonomous systems.

Figure 2. Integration mechanism as a result of applying methodology’s
first steps

The future work is to refine, detail and complement the proposed
methodology with schemas for the formal and graphical development
and evaluation of the documentation, the model for valuation of non
functional characteristics, the evaluation of variability, the verification
of functional requirements, the abstraction, validation and evolution of
the reference architecture, etc.

REFERENCES
[1] I. Sommerville, Ingeniería de Software, Pearson Education, México,

2002
[2] R. S. Pressman, Software Engineering; A Practitioner’s Approach,

Fifth Edition, McGraw Hill, USA, 2001
[3] O’ Cinnéide, M., Automated Application of Dessign Patterns: A

Reffactoring Approach, Doctoral Thesis, University of Dublín,
Trinity College, Irlanda, Octubre 2000

[4] Heiler, S., “Semantic Interoperability”, ACM Computer Surveys,
Vol. 27 No. 2, junio 1995, pp 271-273

[5] Egyhazy, C., Mukherji, R., “Interoperability Architecture Using RM
ODP”Comunications of the ACM, Vol 47-No 2, Febrero 2004,
pp 93-97

[6] Eyal A., Milo, T., “Integrating and customizing heterogeneous e-
commerce applications”, The VLDB Journal 10, Springer-
Verlang, USA, Agosto, 2001, pp 16-38

[7] Chiang, Ch., “A Distributed Objetc Computing Architecture for
Leveraging Software Reengineering Systems”, SAC 2001, ACM,
Las Vegas, NV, USA, 2001, pp 653-657

[8] Sheth, A., Larson, J., “Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases”, ACM
Computing Surveys, Vol. 22, No. 3, Septiembre, 1990, pp 183-
2 3 6

[9] Thomas, G., Thompson, G., Chung, Ch., Barkmeyer, E., Carter, F.,
Templeton, M., Fox, S., Hartman, B., “Heterogeneous Distrib-
uted Databases Systems for Production Use”, ACM Computing
Surveys, Vol. 22 No. 3, Septiembre 1990, pp 237-266

[10] Davis, S., “SQL Integrator: A Data Request Broker for Heteroge-
neous Data Access”, Novell App Notes, Novell, Inc., USA, Mayo
1998, pp 57-70

[11]Williams, D., Poulovassilis, A., “An Example of the ESTEST
Approach to Combining Unstructured Text and Structured Data”,
School of Computer Science and Information Systems, Birkbeck
College, University of London, Inglaterra, 2004, pp 1-5

[12] Reed, P., “Reference Architecture: The Best of Best Practices”, the
Rartional Edge, Rational Software-IBM, USA, Septiembre 2002,
pp. 1-14

[13] Garland D., Shaw, M., “An Introduction to Software Architecture”,
CMU-CS-94-166, School of Computer Science, Carnegie Mellon
University, Pittsburg, PA, USA, Enero 1994, pp 1-39

[14] Bass L., Clements, P. y Kazman R., Software Architecture in
Practice. Second Edition, Adison Wesley, U.S.A., 2003

[15] Mehta, N., Soma, R., Medvidovic, N., “Style-Based Software
Architectural Compositions as Domain-Specific Models”,
USCCSE 2004, Department of Computer Science, University of
South California, Los Angeles, CA, USA, 2004, pp 1-8

[16] Albin, S., “The Art of Software Architecture”, Wiley Publishing
Co., USA, 2003

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/building-methodology-design-

reference-architecture/32868

Related Content

Secure Mechanisms for Key Shares in Cloud Computing
Amar Buchadeand Rajesh Ingle (2018). International Journal of Rough Sets and Data Analysis (pp. 21-41).

www.irma-international.org/article/secure-mechanisms-for-key-shares-in-cloud-computing/206875

Classification of Sentiment of Reviews using Supervised Machine Learning Techniques
Abinash Tripathyand Santanu Kumar Rath (2017). International Journal of Rough Sets and Data Analysis

(pp. 56-74).

www.irma-international.org/article/classification-of-sentiment-of-reviews-using-supervised-machine-learning-

techniques/169174

Overview of Dooyeweerd's Philosophy
Andrew Basden (2008). Philosophical Frameworks for Understanding Information Systems (pp. 32-61).

www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080

Hybrid Artificial Intelligence Heuristics and Clustering Algorithm for Combinatorial Asymmetric

Traveling Salesman Problem
K Ganesh, R. Dhanlakshmi, A. Tangaveluand P Parthiban (2009). Utilizing Information Technology

Systems Across Disciplines: Advancements in the Application of Computer Science (pp. 1-36).

www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714

Modeling Academic ERP Issues and Innovations with AST
Harold W. Webb (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 853-863).

www.irma-international.org/chapter/modeling-academic-erp-issues-and-innovations-with-ast/112478

http://www.igi-global.com/proceeding-paper/building-methodology-design-reference-architecture/32868
http://www.igi-global.com/proceeding-paper/building-methodology-design-reference-architecture/32868
http://www.irma-international.org/article/secure-mechanisms-for-key-shares-in-cloud-computing/206875
http://www.irma-international.org/article/classification-of-sentiment-of-reviews-using-supervised-machine-learning-techniques/169174
http://www.irma-international.org/article/classification-of-sentiment-of-reviews-using-supervised-machine-learning-techniques/169174
http://www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080
http://www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714
http://www.irma-international.org/chapter/modeling-academic-erp-issues-and-innovations-with-ast/112478

