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of a pixel is estimated with respect to the neighboring pixel’s frame of
discernment within a context window, it is likely that nonspecificity
score would reflect the affect of class boundary. In a boundary region,
the total number of focal elements is greater than the inner region of
a class.  However, the cardinality of each focal element is not large
enough. Therefore, in a boundary region the nonspecificity is low.
Similar reasoning can be extended in the measures of discord. The discord
function in the area shows a skewed distribution with a mean and standard
deviation of 0.193 and 0.26 respectively. The total uncertainty is
measured as the sum of discord and nonspecificity (Figure 1), which

shows the same range as the nonspecificity and discord, i.e., [0, X2log ]

or (0, 2.32190).

CONCLUSIONS
The uncertainty involved in the implicit stochastic effect of neighbor-
hood evidences is formalized in a modified probability measure. Uncer-
tainty measures established here incorporates estimation of randomness
as well as conflicts in evidential claims of spatial as well as non-spatial
evidences. The numerical uncertainty measures are primarily derived
from the decision component of rough set equivalence classes, which are
characterized by the attribute structure of the neighborhood context of
spatial order. A key advantage of this model is that the model exploits

the spatial coincidence or co-location association in the model induc-
tion process without introducing any subjective bias in the uncertainty
measurement. The limitation of probabilistic measures are overcome by
integrating rough set and Dempster-Shafer model in spatial prediction
providing a means for improving classification schemes.
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