
668 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Reasoning about Functional and
Non-Functional Concerns during Model

Refinement: A Goal-Oriented and
Knowledge-Based Approach

Lawrence Chung, The University of Texas at Dallas, chung@utdallas.edu
Sam Supakkul, Titat Software LLC, ssupakkul@ieee.org

ABSTRACT
Traditional model driven development follows the stepwise refinement
approach where early phase models are gradually refined with more
details from one version to another and from one phase to another
successively until they are expressed in the terms of the underlying
programming language. Every refinement step implies some design
decisions. The quality of a software system largely depends on how good,
or bad, these decisions are. The quality of decisions in turn would depend
on what kind of alternatives are explored, what kind of trade-offs are
analyzed, and how a particular selection is made. However, the process
of decision making is carried out only informally, where the knowledge
and rationale that led to the decision are not explicitly documented. This
makes it difficult for others to understand why certain decisions were
made and to reuse the knowledge. This paper presents a goal-oriented
and knowledge-based approach for explicitly representing, organizing,
and reusing software development knowledge. In this framework, non-
functional characteristics, such as performance and security, are treated
as (soft) goals to be achieved and act as the criteria for selecting the
alternatives. The application of this framework is illustrated using the
refinement of a UML sequence diagram message.

I. INTRODUCTION
Traditional model driven development such as in UML-based [8]
development follows the stepwise refinement approach. Every refine-
ment step implies some design decisions [14]. The quality of a software

system largely depends on how good, or bad, these decisions are. For
example, Fig. 1 shows three alternatives for refining the “send-alarm”
message on a UML sequence diagram from analysis to the design level.
Option (a), DeviceInterface makes a synchronous method invocation
call and is blocked until the AlarmManager is done handling the message.
Option (b) uses Producer-Consumer-Queue (PCQ) pattern [21] to
deposit the new alarm into a synchronized buffer to be picked up by
AlarmManager running in a separate thread/process, and option (c) uses
Message-Oriented Middleware (MOM) [23] to asynchronously send the
new alarm. Exploring and evaluating design decisions are usually carried
out only informally without records of the knowledge and rationale used
during the process [20]. This makes it difficult for others to understand
why certain decisions were made and also to reuse the knowledge. These
problems are the main focus of the design rationale research that
produces a number of methods. However, these methods are generic for
general design that is not tailored for software. The NFR Framework
[4,5] provides a framework that is more specific and suitable for software
development, especially for non-functional requirements (NFRs) mod-
eling and architectural design. This paper adopts and extends the NFR
Framework [4,5] to present a goal-oriented and knowledge-based frame-
work for representing and organizing knowledge used for exploring
design alternatives and evaluating trade-offs. We illustrate the applica-
tion of the method using the refinement of the sequence diagram message
shown in Fig. 1 as running examples throughout the paper.

 The rest of the paper is organized as follows. Section II gives a brief
overview of the NFR Framework. Section III describes the knowledge

Figure 1. Examples of alternatives for refining a message in a sequence diagram

DeviceInterface MOM

send

AlarmManager

push

DeviceInterface AlarmManager

send-alarm

DeviceInterface PCQ

deposit

AlarmManager

remove

(a) (b) (c)

Analysis Model

Design Model

DeviceInterface

sendAlarm

AlarmManager

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12650

Emerging Trends and Challenges in IT Management 669

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

representation in design model and how to capture it as Method. Section
IV describes how to organize Methods. Section V describes how the
Methods are reused. Finally, Sec. VI offers some conclusion remarks.

II. OVERVIEW OF THE NFR FRAMEWORK
The NFR Framework [4,5] is a goal-oriented method for dealing with
NFRs, which are represented as softgoals to be satisficed. The framework
employs “goal-refinement, exploration of alternatives, and evalua-
tion” analysis pattern. Using this pattern, first, high level goals are
identified and refined using AND/OR decomposition. Then, design
decisions for operationalizing the NFR softgoals are identified, refined,
or further operationalized by lower level operationalizations. Last, the
design decisions are evaluated based on how they contribute (positively
or negatively) to the NFR softgoals. This entire process is recorded in
a diagram called Softgoal Interdependency Graph (SIG). In the SIG, all
softgoals are named with “Type[Topic]” nomenclature. In the case of
NFR softgoal, “Type” indicates the NFR concern and “Topic” the
context for the NFR. In the case of operationalizing softgoal, “Type”
indicates the operationalization concept and “Topic” the context for
which the solution is applicable. Finally, in the case of argumentation
softgoal, “Type” indicates either FormalClaim or (informal) Claim [4]
and “Topic” the corresponding argument description. Figure 2.a shows
an example of the SIG. The individual pieces knowledge used to build each
piece of the SIG can be captured as Methods as shown in Fig. 2.b.

III. REPRESENTING AND CAPTURING DEVELOPMENT
KNOWLEDGE

A. Representing Development Knowledge
Figure 3 shows a design decision process for refining the “send-alarm”
sequence diagram message. In this paper, “goal” refers to a functional
goal and “softgoal” refers to a non-functional goal. First, we identify and
refine functional goals (i.e. “Design[Message]”). Second, design deci-
sions (“Synchronous[Message]” and “Asynchronous[Message]”) are
identified. We repeat the refinement and operationalization of
operationalizing goals until they are low-level enough for implementa-
tion. Last, the design decisions are evaluated based on their positive or

negative contributions toward the highest criticality NFR softgoals
(Reponsiveness).

B. Capturing Development Knowledge
We adopt and extend the Method mechanism from the NFR Framework
to capture individual pieces of FRs-related knowledge with three addi-
t ional types of Methods: Model Refinement, Functional
Operationalization, and Model Mapping Methods. Attributes of the
Methods (e.g. parent, contribution, and applicabilityCondition) are
used as the selection criteria for selecting applicable Methods to apply.
When a Method is applied against a parent goal, the goals described by
the offspring attribute would be generated and linked to the parent goal.

Model Refinement Method
Using Fig. 3 as an example, refining the send-alarm message to design
level messages is represented by the root goal “Design[Message]”. An
example of Model Refinement Method definition based on Fig. 3 is given
below.

RefinementMethod DesignMessage
 parent: UML.Message /* a UML metaclass */
 offspring: Design[Message]
 contribution: DesignRefinement
 applicabilityCondition: /* user defined */

Functional Operationalization Method
This method captures the knowledge that creates and links an
operationalizing goal to a parent functional or operationalizing goal. An
example is given below.

FnOperationalizationMethod OperationalizeMessage_Sync
 parent: Design[Message]
 offspring: Synchronous[Message]
 contribution: SOME+ !!Responsiveness
 applicabilityCondition: /* user defined */

Figure 2. A softgoal interdependency graph representing NFRs related concepts (a) that are captured as methods (b)

ResponseTime
[Account]

ResponseTime
[GoldAccount]

ResponseTime
[RegularAccount]

PerformFirst
[GoldAccount]

+

++
Claim [“Priority
actions can be
performed first”]

NFR DecompositionMethod ResponseTimeViaSubclass
 parent: ResponseTime[Account]
 offspring: {ResponseTime[RegularAccount],
 ResponseTime[GoldAccount]}
 contribution: AND

OperationalizationMethod HelpResponseTimeWithPerformFirst
 parent ResponseTime[GoldAccount]
 offspring: PerformFirst[GoldAccount]
 contribution: HELP

ArgumentationMethod PerformFirstRationale
 parent PerformFirst[GoldAccount]
 offspring: Claim[“Priority actions can be performed first”]
 contribution: MAKE

...

(a) (b)

non-functional softgoal

operationalizing softgoal

claim softgoal

AND-decomposition

OR-decomposition

Legend

X

satisficed softgoal

denied softgoal

positive contribution
negative contribution

670 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Model Mapping Method
Model Mapping Method captures the knowledge for mapping the parent
of the root goal to a target model. An example of Model Mapping
Method is given below. The mappingMeans attribute indicates the
mechanism or technique used for the mapping. The mappingSpec
attribute specifies the detailed mapping based on the mappingMeans.

MappingMethod AnalysisMessageToDesignMessage_PCQ
 parent: ProducerConsumerQueue[Message]
 offspring: SequenceDiagram
 applicabilityCondition: /* user defined */
 mappingMeans: TemplateMOF
 mappingSpec:
 …
 deposit = factory.create(Message)
 deposit.sendEvent = factory.create(MessageEnd)
 deposit.receiveEvent = factory.create(MessageEnd)
 deposit.sendEvent.covered = <caller’s lifeline>
 deposit.receiveEvent.covered = <recipient’s lifeline>
 remove = factory.create(Message)
 remove.sendEvent = factory.create(MessageEnd)
 remove.receiveEvent = factory.create(MessageEnd)
 remove.sendEvent.covered = <caller’s lifeline>
 remove.receiveEvent.covered = <recipient’s lifeline>
 …
 }

IV. ORGANIZING DEVELOPMENT KNOWLEDGE
It is not only important that we can represent knowledge, but also how
we structure and organize it [10]. This section discusses the organization
of Methods along the three organizational dimensions [11].

A. Aggregation/Decomposition Dimension
In Fig. 4.a, following the composite design pattern [16], Methods may
be combined to form a CompositeMethod. Because CompositeMethod
is also a Method, it can be contained in other CompositeMethods. An
example of the CompositeMethod definition is given as follows. When
the OperationalizeMessage is applied, the two contained Methods are
applied against the parent goal.

CompositeMethod OperationalizeMessage
 parent: Design[Message]
 applicabilityCondition:/* user defined */
 methods: OperationalizeMessage_Synchronous, Operationalize Mes

sage_Asynchronous

B. Generalization/Specialization Dimension
Figure 4.b shows that a Method may be specialized by another Method.
The specialized Method inherits all of the attributes from the general-
ized Method, optionally adds or re-defines one or more attributes. An
example of a specialized Method is given below.

FnOperationalizationMethod OperationalizeMessage_PCQHurt
extends OperationalizeMessage_PCQ

 parent: Asynchronous[Message]
 offspring: ProducerConsumerQueue[Message]
 contribution: MAKE !TimePerformance, HURT !!Reliability
 applicabilityCondition:/* specific condition */

C. Classification/Instantiation Dimension
Figure 4.c shows the classification/instantiation relationship of
MetaMethod, Method, and MethodInstance.

V. REUSING DEVELOPMENT KNOWLEDGE
When sufficient Methods are defined and stored in a knowledge base,
they may be selected and applied successively to generate or update a goal
graph to record the design decision process (i.e. Process) and also the
target model elements (i.e. Product). Figure 5 depicts the Method
application process.

VI. CONCLUSIONS
We have presented a goal-oriented and knowledge-based framework for
representing, organizing, and reusing development knowledge. The
framework extends the NFR Framework with the following extensions:
1) the “goal-refinement, exploration of alternatives, and evaluation”
pattern is now made applicable to functional concerns; 2) three addi-
tional types of Methods have been proposed to capture individual pieces

Figure 3. Representation of functional and non-functional knowledge
for refining a sequence diagram message

DeviceInterface AlarmManager

send-alarm

Design[Message]

Asynchronous
[Message]

Synchronous
[Message]

Time
Performance

ProducerCons
umerQueue
[Message]

MessageOriented
Middleware
Message]

SOME-

++

X

X

Claim[“Caller blocked
until recipient is done
processing the
message”]

Claim[“MOM is more
heavy-weight with more
features and usually
requires a server”]

Sequence
Diagram

M

SOME-

Responsiveness

SOME+

_

!!

!

Figure 4. Methods organization along aggregation (a), generalization (b), and classification dimensions

Method

Simple
Method

Composite
Method

Meta
Method

Method

Method
Instance

Instantiate

Instantiate

Generalized
Method

Specialized
Method

(a) (b) (c)

Functional
Operationalization

Method

Model
Refinement

Method

Model
Mapping
Method

Refinement
Method

Operationalization
Method

Argumentation
Method

*

Emerging Trends and Challenges in IT Management 671

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of FRs-related knowledge; 3) CompositeMethod is introduced to com-
bine and reuse previously defined simple Methods and Correlation Rules.
With these extensions, both functional and non-functional concerns
can be analyzed together with NFRs as the criteria guiding the design
decisions. Knowledge of such analysis can be captured, cataloged,
tailored, improved, and reused. Future work of this research includes
developing a metamodel to semi-formally describe the framework to
extend the UML profile we previously defined for integrating the NFR
Framework with UML [15], to also support functional goal analysis.

REFERENCES
[1] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-Directed

Requirements Acquisition,” Science of Computer Program-
ming, Vol. 20, 1993, pp. 3-50

[2] J. Mylopoulos, L. Chung, and E. Yu, “From Object-Oriented to
Goal-Oriented Requirements Analysis,” Comm. ACM, vol. 42,
no. 1, Jan. 1999, pp. 31-37

[3] J. Mylopoulos, L. Chung, S. Liao, and H. Wang, “Exploring
Alternatives During Requirements Analysis,” IEEE Software,
Jan./Feb.2001,pp. 2-6

[4] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements,” IEEE Trans. Software Engineer-
ing, Vol. 18, No. 6, June 1992,pp. 483-497

[5] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Publishing, 2000

[6] Y. Yu, J. C. S. do Prado Leite, and J. Mylopoulos, “From Goals
to Aspects: Discovering Aspects from Requirements Goal Mod-
els,” In Proc. 12th IEEE Int. Requirements Engineering Confer-
ence, 2004, pp. 38-47

[7] G. Caplat, J. Sourouille, “Considerations about Model Mapping,”
Workshop in Software Model Engineering, Oct. 2003, San
Francisco, USA, http://www.metamodel.com/wisme-2003/18.pdf

[8] OMG, “UML 2.0 Superstructure Specification,” http:/ /
www.omg.org/cgi-bin/apps/doc?ptc/04-10-02.zip, Oct. 2004

[9] OMG, “MDA Guide Version 1.0.1,” http://www.omg.org/cgi-bin/
apps/doc?omg/03-06-01.pdf, June 2003

[10] S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing More
World Knowledge in the Requirements Specification,” In Proc.
6th Intl. Conf. on Software Engineering, Tokyo, Japan, 1982.

[11] R. Hull, and R. King, “Semantic database modeling: Survey,

application and research issues,” ACM Comp. Surv. Vol. 19, No.
3, 1987, pp.201-260

[12] W. Regli, X. Hu, M. Atwood, and W. Sun, “A Survey of Design
Rationale Systems: Approaches, Representation, Capture, and
Retrival,” Engineering with Computers, Vol. 16, Springer-
Verlag, pp.209-235

[13] K. Arnold, J. Gosling, and D. Homes, The Java Programming
Language, Third Edition, Addison-Wesley, 2000

[14] N. Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, Vol. 14, 1971, pp.221-227

[15] S. Supakkul and L. Chung, “A UML Profile for Goal-Oriented and
Use Case-Driven Representation of NFRs and FRs”, In Proc.
SERA’05, IEEE Computer Society. pp. 112-119

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

[17] OMG, “Meta Object Facility (MOF) 2.0 Core Specification,”
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf, Oct.
2003

[18] E. Kavakli, “Goal-Oriented Requirements Engineering: A Uni-
fying Framework,” Requirements Eng., vol. 6, no.4, 2002, pp.
237-251

[19] A.I. Anton, “Goal-based Requirements Analysis,” In Proc. 2nd

IEEE Intl. Conf. Requirements Engineering, 1996, pp.136-144
[20] S. Shum, and N. Hammond, “Argumentation-Based Design

Rationale: What Use at What Cost?” International Journal of
Human-Computer Studies, Vol. 40, No. 4, 1994

[21] K. Jeffay, “The Real-Time Producer/Consumer Paradigm: A
paradigm for the construction of efficient, predictable real-time
systems,” In Proc. ACM/SIGAPP Symposium on Applied Com-
puting, Indianapolis, IN, February, 1993, pp.796-804

[22] M. Wahler, “Formalizing Relational Model Transformation
Approaches”, Research Plan, Swiss Federal Institute of Technol-
ogy Zurich, 2004, http:/ /www.zurich.ibm.com/~wah/doc/
research_plan_wahler.pdf

[23] W. Emmerich. “Software Engineering and Middleware: A
Roadmap” The Future of Software Engineering, ACM Press
2000

[24] S. Supakkul and L. Chung, “Representing, Organizing and Reus-
ing Knowledge about both Functional and Non-Functional Con-
cerns during Software Development,” Submitted

DeviceInterface AlarmManager

send-alarm

Design[Message]

Asynchronou
s [Message]

Synchronous
[Message]

Time
Performan
ce

ProducerCo
nsumerQue
ue
[Message]

MessageOriente
dMiddleware
Message]

SOME
-

++

X

X

Claim[“Caller
blocked until
recipient is done
processing the
message”]

Claim[“MOM is more
heavy-weight with more
features and usually
requires a server”]

Sequence
Diagram

M

SOME
-

Responsiveness

SOME
+

_

!!

!

Method
Application

Methods

Source Model

Method
Knowledge
Base

Process

Product

DeviceInterface AlarmManager

send-alarm

DeviceInterface PCQ

deposit

AlarmManager

remove

Time
Performance

Responsiveness!!

!

NFRs

Figure 5. Methods application that generates a goal graph and the target model

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/reasoning-functional-non-functional-

concerns/32874

Related Content

Application of Data Mining in Smart Grid Technology
Lipi Chhaya, Paawan Sharma, Adesh Kumarand Govind Bhagwatikar (2021). Encyclopedia of Information

Science and Technology, Fifth Edition (pp. 815-827).

www.irma-international.org/chapter/application-of-data-mining-in-smart-grid-technology/260231

IS Design Considerations for an Innovative Service BPO: Insights from a Banking Case Study
Myriam Raymondand Frantz Rowe (2016). International Journal of Information Technologies and Systems

Approach (pp. 39-56).

www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884

Identification of Heart Valve Disease using Bijective Soft Sets Theory
S. Udhaya Kumar, H. Hannah Inbarani, Ahmad Taher Azarand Aboul Ella Hassanien (2014). International

Journal of Rough Sets and Data Analysis (pp. 1-14).

www.irma-international.org/article/identification-of-heart-valve-disease-using-bijective-soft-sets-theory/116043

Informationism, Information and Its Neuronal Theories
Emilia Currás (2012). Systems Science and Collaborative Information Systems: Theories, Practices and

New Research (pp. 71-86).

www.irma-international.org/chapter/informationism-information-its-neuronal-theories/61286

Empirical Verification of the Performance Measurement System
Aleksander Janeš (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 5638-

5649).

www.irma-international.org/chapter/empirical-verification-of-the-performance-measurement-system/184264

http://www.igi-global.com/proceeding-paper/reasoning-functional-non-functional-concerns/32874
http://www.igi-global.com/proceeding-paper/reasoning-functional-non-functional-concerns/32874
http://www.irma-international.org/chapter/application-of-data-mining-in-smart-grid-technology/260231
http://www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884
http://www.irma-international.org/article/identification-of-heart-valve-disease-using-bijective-soft-sets-theory/116043
http://www.irma-international.org/chapter/informationism-information-its-neuronal-theories/61286
http://www.irma-international.org/chapter/empirical-verification-of-the-performance-measurement-system/184264

