
762 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Hybrid Agent Web Service Engineering:
A Case Study in Financial

Application Domain
Sujan Pradhan, Department of Computer Science and Computer Engineering, La Trobe University, Bundoora, Melbourne, VIC 3086,

Australia, sujan@cs.latrobe.edu.au

Hongen Lu, Department of Computer Science and Computer Engineering, La Trobe University, Bundoora, Melbourne, VIC 3086,
Australia, helu@cs.latrobe.edu.au

ABSTRACT
The adaptation of Web Service (WS) by the financial services industry
is inherently becoming quite common in the new architectural paradigm-
Service Oriented Architecture (SOA). However, such proliferation has
had its share of limitations in building new loosely coupled, intelligent
and dynamic applications. This paper proposes to extend these limita-
tions by introducing a traditional concept of software agents which are
wrapped around by WS. These agents capture the following essences
which the WS lacks- autonomous behavior, ability to build up intelli-
gence over time, and able to hold conversation-like transactions. These
multilingual agents are hybrids, which profoundly fill in the few gaps of
several WS shortcomings. In order to build such hybridity the following
are proposed: during WS invocations SOAP is used as the Agent
Communication Language (ACL) to communicate between agents (or
between an agent and a WS) since it is readily available over HTTP; and
during local (or distributed) access of resources some other traditional
established form of ACL is used. By incorporating such hybrid charac-
teristics new web applications are now able to utilize and capture the
versatility of WS while maintaining dynamism, intelligence, transac-
tional semantics and autonomous behavior within the application.
Furthermore, the integration of these agents help construct a well
defined architecture, as they are built from proven formal engineering
methodologies and standards, which are not yet available to WS. A model
in financial services application domain is used to exemplify the above.

1. INTRODUCTION
As WS is becoming more mainstream in the financial services industry
there is an increasing need to apprehend its current capability before
exploiting its full potential. A WS is described as a software system
designed to support interoperable machine-to-machine interaction over
a network [1]. This is among many definitions that have been used to
describe a WS in the past.

The promise and advent of WS is that communication between human
and machine will eventually be replaced by machine to machine
communication. For example, a user who searches for the best widget
will now be replaced by an agent, which in turn will search on the user’s
behalf. In this sense, the use of an intelligent agent to discover, publish
and bind services become more prominent than just using plain Remote
Procedure Calls (RPC); agents simply have the following added advan-
tages among others- able to act autonomously and the ability to
negotiate contracts through synchronous communication. They also
have the ability to build up knowledge-base and intelligence over time.
In order for these agents to communicate effectively, one common
language must be shared. However, the sharing of a language is limited
to common agents; this means it is possible for an agent to communicate
in different languages with other agents which lie in separate domains.
These are said to be hybrid agents. [13] uses the following definition:

Hybrid agents refer to those whose constitution is a combination of two
or more agent philosophies within a singular agent. The key hypothesis
for having hybrid agents or architectures is the belief that, for some
application, the benefits accrued from having the combination of
philosophies within a singular agent is greater than the gains obtained
from the same agent based entirely on a singular philosophy.

In the context of the current WS environment SOAP is the obvious
choice of ACL since it is readily available and currently used as the de-
facto language for communication between WSs. In combining agents
and WS, [2] proposes these two fundamentally separate paradigms are
closely related. Similarly, during local or distributed transactions where
proprietary systems are in place an ACL such as KIF will be used. Using
the above definitions we propose a new application model, STM (Stock
Trade Model), for stock trading domain. This model represents the use
of hybrid agent which communicates with separate WSs while maintain-
ing close contact with other in-house agents.

2. AGENT LANGUAGES USED FOR COMMUNICATION
Agent languages are an integral part of any agent-oriented framework.
[14] states that agents are role/goal oriented. Figure 1 depicts this
phenomenon in comparison to other languages. As such, agent languages
differ depending on the agent’s role or a task. These agents must be able
to communicate in a language that all agents can understand or agree;
if varying heterogeneous agents exist a multilingual or hybrid agent is
needed.

2.1. SOAP as ACL
SOAP along with WSDL (Web Service Description Language) and UDDI
(Universal Description, Discovery, and Integration) is the latest in RPC

Figure 1. Design/language paradigm [14]

Command Oriented

Object Oriented

Agent (Role/Goal) Oriented

Function Oriented

2GL, Assembler

3GL, C, Pascal

KIF, KQML

C++, Java

Real World
Mapping
(Level of

Abstraction)

Time

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12875

Emerging Trends and Challenges in IT Management 763

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

technologies. It is known to seamlessly integrate distributed systems,
applications, processes or functions over the Internet; its versatility to
penetrate through firewalls is unmatched. This three-part XML proto-
col contains rules on descriptions of data types, and how and where to
make RPCs and responses. The significance of SOAP in the WS-agent
paradigm is unparalleled. WSs wrapped around agents can make use of
SOAP as an ACL during machine to machine communications. The only
restriction for these machines is that they must be able to communicate
over the Internet.

Protocols of traditional ACLs are normally blocked by firewalls and
proxy servers during RPC. Although these protocols provide a basic
architecture for knowledge sharing through a special class of agent called
communication facilitators, which coordinate the interactions of other
agents [4], they do not communicate via HTTP like SOAP. It has
already been established that HTTP is a better way to communicate
between applications as it is supported by all Internet browsers and
servers [7] [11]. Furthermore, SOAP is language and platform indepen-
dent.

2.2. KIF as ACL
Unlike SOAP KIF is a traditional ACL which is designed for use in the
interchange of knowledge among disparate computer systems (created
by different programmers, at different times, in different languages, and
so forth); however it is not intended as a primary language for interaction
with human users (though it can be used for this purpose) [15] [3]. Albeit
other ACL (i.e. Knowledge Query and Manipulation Language) exists
KIF was chosen for implementing STM because of its ability to flawlessly
integrate legacy systems, see Figure 2.

3. HYBRID AGENTS IN WS
Agents typically have these characteristics- communicative, capable,
autonomous, and adaptive; when any one of these characteristics is
repeated the agent becomes hybrid; the term hybrid here is applied using
the definition set forth by [13]. In order to reason the need for such
hybrid agents an explanation of the use of agents in general is needed,
as set forth below.

3.1. The Use of Agents
An agent is a piece of software that has the capacity to autonomously
conduct its work [5]. The reason for use of agents in this application is
to provide the necessary conversation-like synchronous processing
during each of the phases. Agents are inherently communicative [9],
whereas WSs are passive until invoked.

Autonomy is one of the main features of agents. The ability of each of
the agents to exist on its own is inherently important for a loosely
coupled WS architecture; the autonomous agents help accomplish this
feat. In addition, agents can suggest to buy, sell or hold a stock or suggest
accordingly if there is certain trend in the market (i.e. federal reserve
raises the interest rate); these are the characteristics of an intelligent
agent. Such agents can also learn about the trend of traders (i.e. in which
sectors stocks are traded often); these statistical data may have some
intrinsic value to the traders themselves.

The agents in our model have to be able to communicate through some
mechanism- in the WS context the choice would be SOAP. [5] suggests
that one key advantage of having the ability to communicate this way
for social interaction is that agents can form a domain agent society.
This means that if an agent cannot answer a question it will find an agent
who can. Such resources can ultimately help the trader make quicker
decisions, i.e. Position Indicator Agent (PIA) in Figure 3 can suggest a
buy, sell or hold position depending on the historical and current prices.

3.2. The Need for Hybrid Agents
A simple approach to understanding the need for hybrid agents is that
an agent with one plan or philosophy will accomplish less than if it were
to constitute a combination of two or more philosophies within a

singular agent [13]. This was proven in [16] when hybrid agents were
created out of the strengths of both the collaborative (deliberative) and
reactive paradigms. Such agents conform to a set of rules which lead to
higher benefits as opposed to standard agents. [17] states hybrid agents
not only combine aspects of both reactive and deliberate agents but also
make use of the best features of both architectures. Although the
definition in [13] gives more adherences to the concept of hybrid agents
during the implementation of STM the definition used by [17] is used
to further extend the model.

4. FINANCIAL SERVICES APPLICATION DOMAIN
MODEL: STOCK TRADING
The STM is based on a scenario of trading stocks in an open financial
market. STM stipulates a stock trade to any one given entity; in the real
world the trading of stocks involves two essential fundamental steps:
evaluation of historical data of the company to be traded and the
execution of trade. STM emphasizes the importance of multi-party
synchronous dialogue that must be carried out before a trade can be
finalized. And such dialogue can only be carried out with the help of
agents, hybrid agents to be more precise.

4.1. General Description
As in [12] the goal of this application is to realize and advance the
potential of agent-based applications by constructing an open, distrib-
uted network of platforms hosting diverse agents and WSs. The moti-
vating scenario behind this application is a potential stock trader who
would like to conduct research by gathering historical data and to
perform stock trades. Its goal is to make this process available to the
masses and not confined to only an elite breed of investors who own
expensive proprietary trading systems, such as Bloomberg Trading and
NASDAQ Level II; in another words, this application domain not only
tries to level the playing field for any one potential investor but also
conforms to loosely coupled open trading systems. The intricacies of
this application are heavily dependent on the synchronous request-
response SOAP framework.

Figure 3 presents a high level depiction of the stock trade process. A
potential trader either requests research information or wants to execute
a trade. This request is first read by the Stock Trade Agent (STA);
depending on the incoming information the STA performs a number of
activities- fetches quotes from the stock exchange, executes trades on
behalf of the client, and completes the following tasks with the help of
Data Processor Agent (DPA): delivers raw historical data, performs
OLAP (On Line Analytical Processing) queries with given parameters
by utilizing existing data warehouse, and fetches client details from
mainframes or other data repositories.

Figure 2. Financial services- stock trade model

tra
de (S

OAP)

Investment Bank Clearing House

Stock
Trade
Agent

Stock Exchange

Private
Institutional

Investor

Individual
Investor

Public
Government

Investor

Data
Processor

Agent

Mainframe Data Warehouse

trade (SOAP)

trade (SOAP)trade (SOAP)

S
O
A
P

P
A
R
S
E
R

S
O
A
P

P
A
R
S
E
R research data

(KIF)
research (SOAP)

research (SOAP)

research (S
OAP)

client details
(KIF)

quote (SOAP)

764 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

4.2. Hybrid Agent: Stock Trade Agent
The STA in Figure 2 is an example of a hybrid agent. It has the ability
to make request/response claims by interacting with WS via SOAP, as
well as the ability to communicate with DPA via KIF; DPA may have
either a local or distributed architecture. A scenario is now used to point
out these intricacies. If a private institutional investor wants to trade
equities it sends in a request to STA. STA will determine the nature of
the invocation and if the request is to make a trade it will immediately
send the request to one of its affiliated brokers in the Stock Exchange.
STA could have also completed any one number of events before a trade
was executed; for example, it could have supplied the investor with real
time quotes, or client details or research data by utilizing DPA. The
ability to complete these tasks would be daunting if STA was not hybrid;
in other words, if STA lacked the ability to communicate in multiple
languages.

1.1.1 STA utilizing SOAP message to complete a task
The code implementation below has been built using a Java tool, Java
Agent Development Framework (JADE) [10] [8]. It shows STA in
action- parsing SOAP message to XML, traversing through the XML
document to locate the type of service requested and finally executing
that service. In the above example, STA conducts a stock trade for an
investor by sending the trade information to the Stock Exchange and
relaying the confirmation of the trade back to the client investor.

package com.investmentbank.stocktrade;

import jade.core.Agent;

import jade.core.behaviours.*;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import jade.domain.DFService;

import jade.domain.FIPAException;

import jade.domain.FIPAAgentManagement.DFAgentDescription;

import jade.domain.FIPAAgentManagement.ServiceDescription;

import org.apache.xerces.parsers.DOMParser;

import org.apache.xerces.dom.*;

import org.w3c.dom.*;

import java.util.*;

public class StockTradeAgent extends Agent

{

 protected void setup()

 {

 // Register the new stock trading service in the central registry

 DFAgentDescription dfAgentDesc = new DFAgentDescription();

 dfAgentDesc.setName(getAID());

 ServiceDescription serviceDesc = new ServiceDescription();

 serviceDesc.setType(“stock-trading”);

 serviceDesc.setName(“JADE-stock-trading”);

 dfAgentDesc.addServices(serviceDesc);

 try

 {

 DFService.register(this, dfAgentDesc);

 }

 catch (FIPAException fe)

 {

 fe.printStackTrace();

 }

 // Parse incoming SOAP message to XML (skipped for the sake of brevity)

 String soapMessage = SOAPMessageToXML.soapParser().toString();

 /* Traverse through the XML document using DOM

 (skipped some parts for the sake of brevity) */

 DOMParser parser = new DOMParser();

 parser.parse(soapMessage);

 String requestTypeNode =

 (((DocumentImpl)parser.getDocument()).getFirstChild()).toString();

 int accountNumber =

 Integer.parseInt((((DocumentImpl)parser.getDocument(

)).getSecondChild()).toString());

 String tickerSymbol =

 (((DocumentImpl)parser.getDocument()).getThirdChild()).toString();

 // If the investor wants to trade stocks

 if(requestTypeNode.equals(“tradestockrequest”)

 {

 String tradeType =

 (((DocumentImpl)parser.getDocument()).getFourthChild()).toString();

 String position =

 (((DocumentImpl)parser.getDocument()).getFifthChild()).toString();

 int shareAmount =

 Integer.parseInt((((DocumentImpl)parser.getDocument(

)).getSixthChild()).toString());

 // Add the behavior for trade queries from investors

 addBehaviour(new TradeRequest(

 accountNumber, tickerSymbol,

 tradeType, position, shareAmount));

 }

 // If the investor wants to conduct research

 else if(requestTypeNode.equals(“researchrequest”)

 {

 /* Needed variables would be traversed through

 the XML document (as above) */

 // Add the behavior for research request from investors

 addBehaviour(new ResearchRequest(/* parameters here */));

 }

 }

 // Agent clean-up functions

 protected void takeDown()

 {

 // Deregistering from the central registry

Emerging Trends and Challenges in IT Management 765

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

 try

 {

 DFService.deregister(this);

 }

 catch (FIPAException fe)

 {

 fe.printStackTrace();

 }

 }

 /* Inner class which passes investor information to Stock Exchange and

 returns the result back to the investor */

 private class TradeRequest extends CyclicBehaviour

 {

 private int accountNumber;

 private String tickerSymbol;

 private String tradeType;

 private String position;

 private int shareAmount;

 private TradeRequest(int accountNumber, String tickerSymbol,

String tradeType, String position, int shareAmount)

 {

 this.accountNumber = accountNumber;

 this.tickerSymbol = tickerSymbol;

 this.tradeType = tradeType;

 this.position = position;

 this.shareAmount = shareAmount;

 }

 public void action()

 {

 MessageTemplate mt =

 MessageTemplate.MatchPerformative(ACLMessage.CFP);

 ACLMessage toStockExchange = msg.createReply();

 toStockExchange.setPerformative(ACLMessage.PROPOSE);

 /* The content would contain an XML document with these attributes:

 tickerSymbol, tradeType, position, shareamount */

 toStockExchange.setContent(

 String.valueOf(/* XML document here */));

 // Message sent to Stock Exchange(SE); SE sends back a SOAP
message

 String soapMessage = myAgent.send(toStockExchange);

 // The parsing of SOAP message is similar to above

 ...

 /* SOAP is parsed to XML doc; once traversed through the XML

 document the message would be sent back to the investor */

 ACLMessage toInvestor = msg.createReply();

 toInvestor.setPerformative(ACLMessage.PROPOSE);

 toInvestor.setContent(String.valueOf(/* XML document here */));

 myAgent.send(toInvestor);

 }

 }

 private class ResearchRequest extends CyclicBehaviour

 {

 /* The functions here would be similar to TradeRequest class;

 only exception would be this agent would communicate

 with the Data Processor Agent */

 }

}

4.3. Data Processor Agent
DPA has two responsibilities; it supplies client detail information and
fetches research data. Once it is invoked by STA it can span through
legacy systems, i.e. mainframe, to locate critical data. For example, if
the investor wants to buy equity by utilizing leverage DPA would fetch
current client account balance and any past due amounts. Another
example is if STA requires any historical data (the clients or the
investors may ask for this information if they are to conduct their own
research) DPA would fetch this from the existing warehouse, see Figure
3.

4.4. Hybrid Agent: Position Indicator Agent
The PIA is another hybrid agent which utilizes a similar concept adopted
by STA. The purpose of PIA is to inform the investors of market signals
and trends. In order to arrive at such signals and trends it uses trading
models to process the existing data from a data warehouse. In the process
it may use OLAP (to query data warehouse) and fetch current quote for
a company in question via SOAP (by connecting to a Stock Exchange).
The result then will be passed to the caller, STA, via KIF. Thus, these
multi-faceted tasks by one single agent translate to hybridism in action.

4.5. SOAP as ACL between Hybrid Agents and WS
Since WS in the financial applications framework is wrapped around
hybrid agents SOAP has been chosen as the ACL for communication.
Listing 1 to 4 below are SOAP messages during request/response between
WS and STA.

Listing 1: WS SOAP request for a stock trade

<?xmlversion=”1.0"?>
<SOAP-ENV:Envelope

Figure 3. Detailed view of hybrid agents

Equity
Trading
Models

Investment Bank Clearing House

Stock
Trade
Agent

Data
Processor

Agent

Mainframe

Data Warehouse

research data
(KIF)

client details
(KIF)

Statistical DataRaw Economic
Data

Raw Historical
Stock Prices

Position
Indicator

Agent

trade indicator
(KIF) uses S

O
A
P

P
A
R
S
E
R

Stock Exchange

quote (SOAP)

766 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema” xmlns:xsi=”http://
www.w3.org/1999/XMLSchema-instance”>
 <SOAP-ENV:Body>
 <m:tradeStockRequest xmlns:m=”http://www.investmentbank.com/”>
 <accountnumber xsi:type=”xsd:int”>98589025</accountnumber>
 <tickersymbol xsi:type=”xsd:string”>intc</tickersymbol>
 <tradetype xsi:type=”xsd:string”>market</tradetype>
 <position xsi:type=”xsd:string”>buy</position>
 <shareamount xsi:type=”xsd:int”>1000</shareamount>
 </m:tradeStockRequest>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 2: STA SOAP response for a stock trade

<?xml version=”1.0"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema” xmlns:xsi=”http://
www.w3.org/1999/XMLSchema-instance”>
 <SOAP-ENV:Body>
 <m:tradeStockResponse xmlns:m=”http://www.investmentbank.com/”>

 <tradeconfirm xsi:type=”xsd:string”>bought</tradeconfirm>
 <price xsi:type=”xsd:int”>48</price>
 <shareamount xsi:type=”xsd:int”>1000</shareamount>
 <totalamount xsi:type=”xsd:int”>48000</totalamount>
 </m:tradeStockResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 3: WS SOAP request for position indicator

<?xml version=”1.0"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema” xmlns:xsi=”http://
www.w3.org/1999/XMLSchema-instance”>
 <SOAP-ENV:Body>
 <m:getPosition xmlns:m=”http://www.investmentbank.com/”>
 <tickersymbol xsi:type=”xsd:string”>intc</tickersymbol>
 </m:getPosition>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4: STA SOAP response for position indicator

<?xml version=”1.0"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema” xmlns:xsi=”http://
www.w3.org/1999/XMLSchema-instance”>
 <SOAP-ENV:Body>
 <m:getPositionResponse xmlns:m=”http://www.investmentbank.com/”>
 <currentposition xsi:type=”xsd:string”>sell</currentposition>
 </m:getPositionResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

5. CONCLUSION AND FUTURE WORK
In this paper we have presented a novel framework illustrating the
integration of hybrid agents within a WS. The framework consists of two
paradigms- one is agent-WS architecture [6] and the other is the use of
hybrid agents to further extend the previous architecture. The notion
of hybrid agents is relegated to a set of rules which state that the benefits
accrued from having the combination of philosophies within a singular
agent is greater than the gains obtained from the same agent based
entirely on a singular philosophy [13].

WSs by themselves are passive; however, the integration of agents
makes them not only dynamic but have these added benefits- improving
the architecture by clearly redefining business processes, keeping local
knowledge, the ability to ensue beliefs and perceptions from its current
environment. Since agent is a pre-existing concept its vastly available
tools (i.e. application of formal methods- engineering concepts) can be
used to speed up the newly attained concept of WS since building WS is
not an ad-hoc process. Therefore, combining these existing benefits
extends the WS capability by making the application more loosely
coupled, dynamic and intelligent. Another application domain model
where multi-agents can mediate and compose WS in heterogeneous
environment (possibly by using other ACL or mediation architectures)
would be a consideration for future work.

6. REFERENCES
[1] BOOTH, D.; Haas, H.; McCabe, F.; Newcomer, E.; Champion, M.;

Ferris, C.; and Orchard, D. 2004. Web Services Architecture.
World Wide Web Consortium (W3C).

[2] DALTON, C. Model Checking Multi-Agent Web Services. Centre for
Intelligent Sys and their Applications (CISA)

[3] http://logic.stanford.edu/kif/dpans.html
[4] FININ, T.; Fritzson, R.; McKay, D.; McEntire, R.; KQML- A

Language and Protocol for Knowledge and Information Ex-
change University of Maryland, UMBC; Valley Forge Engineer-
ing Center, Unisys Corporation,

[5] FOU, J.; Web Services and Mobile Intelligent Agents: Combining
Intelligence with Mobility; Web Services Architect October 10,
2001

[6] PRADHAN, S.; Lu, H.; Using SOAP Messaging to Coordinate
Business Transactions in Multi-Agent Financial Web Services;
Volume 1, books@ocg.at, iiWAS05, pg. 109-120, September 19-
21, 2005

[7] http://www.w3schools.com/soap
[8] http://agents.felk.cvut.cz/teaching/ui2/JADEtutorial_v2.5.doc
[9] HUHNS, M.; Agents on the Web: Agents as Web Services; University

of South Carolina; IEEE Internet Computing July-August 2002;
IEEE Computer Society.

[10] http://jade.cselt.it/
[11] W3C Web Service Architecture Working Group; Web Service

Architecture Recommendation.
[12] WILLMOTT, S.; Dale, J.; Burg, B.; Charlton, P.; O’Brien, P.;

Agentcities: A Worldwide Open Agent Network. In: The Agentlink
Newsletter 8, November 13-15, 2001

[13] NWANA, H. S.; Intelligent Systems Research; Knowledge Engi-
neering Review, Vol. 11, No. 3, pp. 1-40, September 1996

[14] DIGNUM, F.; Web Services and Software Agents, Invited Presen-
tation, iiWAS2003

[15] GENESERETH, M. R.; Knowledge Interchange Format, draft
proposed American National Standard (dpANS) NCITS.T2/98-
0 0 4

[16] MAES, P. (1991b), “Situated Agents Can Have Goals”, In Maes, P.
(ed) (1991a), Designing Autonomous Agents: Theory and Prac-
tice from Biology to Engineering and Back, London: The MIT
press, 49-70.

[17] NAMEE B.M.; Cunningham, P.; A proposal For an Agent Archi-
tecture for Proactive Persistent Non Player Characters; Department of
Computer Science, Trinity College, Dublin 2, Ireland

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/hybrid-agent-web-service-

engineering/32902

Related Content

Implications of Knowledge Management Adoption Within Higher Education Institutions: Business

Process Reengineering Approach
Fadzliwati Mohiddin, Heru Susantoand Fahmi Ibrahim (2021). Handbook of Research on Analyzing IT

Opportunities for Inclusive Digital Learning (pp. 307-351).

www.irma-international.org/chapter/implications-of-knowledge-management-adoption-within-higher-education-

institutions/278966

On the Transition of Service Systems from the Good-Dominant Logic to Service-Dominant Logic:

A System Dynamics Perspective
Carlos Legna Vernaand Miroljub Kljaji (2014). International Journal of Information Technologies and

Systems Approach (pp. 1-19).

www.irma-international.org/article/on-the-transition-of-service-systems-from-the-good-dominant-logic-to-service-

dominant-logic/117865

Linkage of De-Identified Records in Accordance to the European Legislation
C Quantin, E Benzenine, M Guesdon, JB Gouyonand FA Allaert (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 3245-3253).

www.irma-international.org/chapter/linkage-of-de-identified-records-in-accordance-to-the-european-legislation/112755

Intelligent System of Internet of Things-Oriented BIM in Project Management
Jingjing Chen (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/intelligent-system-of-internet-of-things-oriented-bim-in-project-management/323803

An Extensive Review of IT Service Design in Seven International ITSM Processes Frameworks:

Part II
Manuel Mora, Jorge Marx Gomez, Rory V. O'Connor, Mahesh Raisinghaniand Ovsei Gelman (2015).

International Journal of Information Technologies and Systems Approach (pp. 69-90).

www.irma-international.org/article/an-extensive-review-of-it-service-design-in-seven-international-itsm-processes-

frameworks/125629

http://www.igi-global.com/proceeding-paper/hybrid-agent-web-service-engineering/32902
http://www.igi-global.com/proceeding-paper/hybrid-agent-web-service-engineering/32902
http://www.irma-international.org/chapter/implications-of-knowledge-management-adoption-within-higher-education-institutions/278966
http://www.irma-international.org/chapter/implications-of-knowledge-management-adoption-within-higher-education-institutions/278966
http://www.irma-international.org/article/on-the-transition-of-service-systems-from-the-good-dominant-logic-to-service-dominant-logic/117865
http://www.irma-international.org/article/on-the-transition-of-service-systems-from-the-good-dominant-logic-to-service-dominant-logic/117865
http://www.irma-international.org/chapter/linkage-of-de-identified-records-in-accordance-to-the-european-legislation/112755
http://www.irma-international.org/article/intelligent-system-of-internet-of-things-oriented-bim-in-project-management/323803
http://www.irma-international.org/article/an-extensive-review-of-it-service-design-in-seven-international-itsm-processes-frameworks/125629
http://www.irma-international.org/article/an-extensive-review-of-it-service-design-in-seven-international-itsm-processes-frameworks/125629

