
Emerging Trends and Challenges in IT Management 787

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A Model for Measuring Team Size
as a Surrogate for Software

Development Effort
James A. Rodger, Indiana University of Pennsylvania, MIS & Decision Sciences, Eberly College of Business & Information Technology,

Indiana, PA 15705, jrodger@iup.edu

ABSTRACT
In this paper we identify a set of factors that may be used to forecast
the software effort as measured in man hours. Using field data on over
1,000 field software projects from various industries, and the multiple
regression model, we empirically tested the impact of development
type, functional point complexity, and language type, on the software
development effort. Drawing on the literature, we deduced that the same
independent variables (development type, functional point complexity,
and language type) could be used to predict a surrogate measure of
software effort by examining team size as a dependent variable. Our
results indicate that a relationship exists between the application and use
of I-CASE tools, the number of functional complexity points, the
number of fourth generation language types employed and the software
effort. In a similar manner, a relationship was found between the
application and use of I-CASE tools, the number of functional complex-
ity points, and the number of fourth generation language types employed
and the number of people assigned to a team.

INFORMATION ARCHITECTURE AND SOFTWARE
EFFORT MODEL
Organizations strive to develop information architectures, or high-level
maps of the information requirements of an organization, in order to
map information needs, relate them to specific business functions and
document their interrelationships (Brancheau and Wetherby, 1986;
Allen and Boynton, 1991). The information architecture requires
enabling software products to provide customer satisfaction and to
facilitate the functions necessary to support the organizational environ-
ment (Mudie and Schafer, 1985; Jones, 2001). Boehm and Basili (2000)
state that “if an organization wants a good information-technology-
based system, there must be a synergistic relationship between the IT
components that comprise the delivered system and the software
engineering elements that guide its definition, development, compo-
nent selection integration and validation. However, it has been reported
that at least one in four software projects ends in failure (Keil et al,
2000). Keil and Robey (2001) support these findings and report that
“despite advances in software engineering, project failure remains a
critical challenge for the software development community. The
information architecture is further used to guide software development
(Brancheau, Schuster and March, 1989). Advances in Software Engi-
neering offer significant potential for the development of information
architectures of contemporary organizations (Avgerou, 1987). Infor-
mation system architectures have been viewed as a means to reduce costs
and improve productivity (Wardle, 1984; Bailey and Basili, 1981;
Angelis and Stamelos, 2000). Cost containment and productivity
improvement are major concerns faced by information systems depart-
ments (Mahmood, M.A. Pettingell, K.J. and Shaskevich, 1996). One of
the approaches to contain costs and improve productivity is to develop
better software effort estimation techniques.

SOFTWARE EFFORT
Currently, there are three popular methods of estimating the software
effort. These three models are the linear regression model, cost models
(COCOMO and COCOMOII) and vector prediction models (Hastings
and Sajeev, (2001). All three of the proposed models use lines of code
as one of the independent variables. Lines of code have been proposed
as both an input and output variable by several authors, (Bailey and Basil,
1981; Boehm, 1981; Putman, 1978; 1979; Wolverton, 1974; Wrigley
and Dexter, 1991). Cusamano and Kemerer (1990) argue that Japanese
programmers perform well in software development and average 2000
lines of code per month, with one-tenth the error defects, versus 300
lines per month for US programmers.

There are many factors that affect programmer effort during software
application development (Thadhani, 1984). Many researchers have
developed alternate models for estimating software effort (Wrigley and
Dexter, 1991; Benbasat and Vessey, 1980; Boehm, 1981; Kemmerer,
1987; Deephouse, Mukhopadyay, Goldenson and Kellner, 1996). June
and Lee (2001) have proposed a quasi-optimal case-selective neural
network model of software estimation. Blackburn, Scudder and Van
Wassenhove (1996) developed a model to improve the speed and
productivity of software development. Finne, Witting and Petkov,
(1993) proposed a model for estimating the software development
effort utilizing case-based reasoning.

Maximum Team Size
Assembling the right people for the software engineering project
determines the team structure (Thomsett, 1994). Hammer and Champy
(1994) have discussed “flattening the pyramid of the organizational
structure”, and the same idea can be applied to software project teams.
Faraj and Sproull (2000) investigated the importance of expertise
coordination in 69 software development teams. Expertise coordina-
tion involves “knowing where expertise is located, knowing where
expertise is needed, and bringing needed expertise to bear.” They found
that “expertise coordination shows a strong relationship with team
performance that remains significant over and above team input
characteristics, presence of expertise, and administrative coordination.
Ang and Slaughter (2001) suggest that here is a difference in work
attitudes, behaviors and performance between outside contractors and
permanent software development professionals. Howard (2001) points
out that software engineers may have the right technical skills for a
project but may not have the right personality characteristics.

While reusability is often correlated with alleviating the need to remodel
and retest a large amount of software, it is equally important as a people
issue (Unhelkar, 2003). People who have experience with reuse find it
easier to create reusable designs and code because it leverages expertise
(Lim, 1994). Further, rewards are often given at the completion of a
major milestone in functional development, while in object-oriented
development, reusability requires the need to think ahead beyond the
immediate problem Unhelkar and Mamdapur, 1995). Peer recognition
for large-scale reuse and recognition from the organization when the

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12843

788 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

project is delivered on time motivates members of the team to reuse
designs and codes written by other members of the team (Meyer, 1995;
Thomsett, 1990).

FUNCTIONAL POINT COMPLEXITY
The number of function points is based on an algorithm that computes
a weighted sum of inputs, outputs, and interfaces to other programs
(Yourdon, 1993). Function points have been proposed as input variables
for the software estimation model (DeMarco, 1978, 1982; Albrecht,
1979; 1984; Albrectht and Gaffney, 1983; Desharnais, 1988; Jones,
1986; Rubin, 1983; 1985; Symons; 1988). Kemerer and Porter (1992)
conducted an empirical study for improving the reliability of function
point measurement.

INTEGRATED DEVELOPMENT TOOLS
CASE technology tends to make automating tools flexible and easy to
use. Development tools have been used to improve analyst and program-
mer productivity, improve software quality and reduce maintenance,
and increase management control over the software development
process. Automated software development tools fall into three catego-
ries, programming support tools, design technique tools and project
management tools (Gregory and Wojtkowski, 1990). There is qualita-
tive data available that supports the development tool type as having
an impact on the software effort and productivity (Cusamano and
Kemerer, 1990). Kim (1983) emphasizes that Toshiba’s Software
Factory produces 2870 instructions per programmer month in 1981 due
to the use of integrated tool sets. Other researchers support these claims
(Zelkowitz et al. 1984; U.S. Commerce, 1984; Johnson, 1985; Gamota
and Frieman, 1988).

LANGUAGE TYPE
Programming languages are the primary tools for creating software. The
basic challenge for business software builders is to build reliable software
as quickly as possible. Fourth generation languages automate much of the
work normally associated with developing software applications (Mimno,
1985). Several researchers have demonstrated a relationship between
function points and lines of code in familiar languages (Yourdon, 1993;
Jones 1991). It is generally accepted that the lines-of-code metric
creates an obvious bias against high-level languages. Johnson (2000)
states that a controversy exists about Object-Oriented Systems Devel-
opment (OOSD) and that while experts claim that the advantages of
OOSD make it superior to conventional systems development, others
point out the disadvantages of OOSD and question whether it will ever
be the dominant approach to software development. Sircar et al. (2001)
demonstrated a gap between OO and the structured approach at the
analysis and design stages of the SDLC. They suggest that training should
focus on modeling issues rather than syntax and that this will help
developers to bridge the gap between OO and structured approaches.

TECHNIQUE
The approaches and tools used to develop the software component of
information system architectures are often key factors in their ultimate
success (Paddock, 1986). These approaches can be divided into several
categories. The traditional approach is based on the System Develop-
ment Life Cycle (SDLC). These approaches can be further subdivided
into Descriptive and Normative categories (Colter, 1984; Berrisford and
Wetherbe, 1979). Howard (2002) points out that RAD was promised as
a giant leap in software developer productivity and as a technique for
cutting through traditional software project delays. However, few
organizations have reported significant benefits attributed to RAD
techniques. Highsmith and Cockburn (2001) advocate the application
of agile software development approaches such as Extreme Program-
ming, Crystal methods, Lean Development, Scrum, Adaptive software
Development, that more closely reflects today’s business and technol-
ogy environment.

HYPOTHESES
H01: There is a relationship between the number of functional point

complexities and the software effort.
Ho2: There is a relationship between the number of fourth generation

languages employed and the software effort.
Ho3: There is a relationship between the number of integrated develop-

ment tool types (I-CASE tools) employed and the software
effort .

H04: There is a relationship between the number of functional point
complexities and the software team size.

Ho5: There is a relationship between the number of fourth generation
languages employed and the software team size.

Ho6: There is a relationship between the number of integrated develop-
ment tool types (I-CASE tools) employed and the software team
size.

SOFTWARE EFFORT MODEL

Figure 1. Software Effort Model

Software Development
Effort

Development
Language

Software
Complexity

Development
Tools

SOFTWARE TEAM SIZE

Figure 2. Software Team Size Model

Software Team
Size

Development
Language

Software
Complexity

Development
Tools

RESULT ANALYSIS OF SOFTWARE EFFORT MODEL
The applicability of the Software Effort Model can be determined by an
analysis of the field study of 434 software development projects.
Multiple regression analysis reveals the effects of integrated develop-
ment tool type, functional point complexity, and language type on the
software effort. (Table 1).

The results indicate that overall project evaluations are consistent with
the Software Effort Model. The F value was 153.75 and the model was
significant at the p=0.001 level of significance. The R-square for the
model was .517. This indicates that model-independent variables
explain 526% of the variance in the dependent variable.

Emerging Trends and Challenges in IT Management 789

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

SOFTWARE TEAM SIZE MODEL
The applicability of the Software Team Size Model can be determined
by an analysis of the field study of 216 software development projects.
Multiple regression analysis reveals the effects of integrated develop-
ment tool type, functional point complexity, and language type on the
software team size. (Table 2).

The results indicate that overall project evaluations are consistent with
the Software Team Size Model. The F value was 3.94 and the model was
significant at the p=0.05 level of significance. The R-square for the
model was 0.053. This indicates that model-independent variables
explain 5.3% of the variance in the dependent variable.

Table 1 data reveals the suitability of the Software Effort Model, Table
2 reveals the suitability of the Software Team Size Model. Based on the
data shown in both tables and according to field study projects; integrated
development tool type, functional point complexity, and language
type, are the major factors that affect both summary work effort and
maximum team size.

Table 1. Software Effort One-Way ANOVA Table for Regression Analysis

DEGREES OF
FREEDOM SOURCE SUM OF SQ. MEAN SQ. F VALUE P>F

3 Regression 2.37E+10 7891343846 153.75 .000*

431 Residual 2.21E+10 51324693.70

434 Total 4.58E+10

* significant at p=.001 **Dependent Variable: Summary Work Effort

Table 2. Software Team Size One-Way ANOVA Table for Regression
Analysis

DEGREES OF
FREEDOM SOURCE SUM OF SQ. MEAN SQ. F VALUE P>F

3 Regression 11564.20 3854.73 3.94 .009*

213 Residual 2085564.99 979.18

625 Total 220129.18

* significant at p=.05 **Dependent Variable: Maximum Team Size

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/model-measuring-team-size-

asa/32908

Related Content

Collaborative Design: An SSM-enabled Organizational Learning Approach
Anita Mirijamdotterand Mary M. Somerville (2009). International Journal of Information Technologies and

Systems Approach (pp. 48-69).

www.irma-international.org/article/collaborative-design-ssm-enabled-organizational/2546

Addressing Team Dynamics in Virtual Teams: The Role of Soft Systems
Frank Stowelland Shavindrie Cooray (2016). International Journal of Information Technologies and

Systems Approach (pp. 32-53).

www.irma-international.org/article/addressing-team-dynamics-in-virtual-teams/144306

Geospatial Influence in Science Mapping
Carlos Granell-Canutand Estefanía Aguilar-Moreno (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 3473-3483).

www.irma-international.org/chapter/geospatial-influence-in-science-mapping/184058

Fog Caching and a Trace-Based Analysis of its Offload Effect
Marat Zhanikeev (2017). International Journal of Information Technologies and Systems Approach (pp. 50-

68).

www.irma-international.org/article/fog-caching-and-a-trace-based-analysis-of-its-offload-effect/178223

Detecting the Causal Structure of Risk in Industrial Systems by Using Dynamic Bayesian

Networks
Sylvia Andriamaharosoa, Stéphane Gagnonand Raul Valverde (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-22).

www.irma-international.org/article/detecting-the-causal-structure-of-risk-in-industrial-systems-by-using-dynamic-

bayesian-networks/290003

http://www.igi-global.com/proceeding-paper/model-measuring-team-size-asa/32908
http://www.igi-global.com/proceeding-paper/model-measuring-team-size-asa/32908
http://www.irma-international.org/article/collaborative-design-ssm-enabled-organizational/2546
http://www.irma-international.org/article/addressing-team-dynamics-in-virtual-teams/144306
http://www.irma-international.org/chapter/geospatial-influence-in-science-mapping/184058
http://www.irma-international.org/article/fog-caching-and-a-trace-based-analysis-of-its-offload-effect/178223
http://www.irma-international.org/article/detecting-the-causal-structure-of-risk-in-industrial-systems-by-using-dynamic-bayesian-networks/290003
http://www.irma-international.org/article/detecting-the-causal-structure-of-risk-in-industrial-systems-by-using-dynamic-bayesian-networks/290003

