Chapter 5 How to Use Prompt Engineering for ChatGPT in Medical Education

ABSTRACT

In this chapter, the authors present an appropriate use of prompt engineering in ChatGPT in developing a hypothetical case study for students in understanding basic medical science. In artificial intelligence, particularly in natural language processing, the idea of prompt engineering is used. In prompt engineering, the task description that the AI is expected to complete is incorporated into the input, for example, as a question. Students and teachers can develop hypothetical case studies for their learning of the subjects such as pathology, pharmacology, Western medical diagnostic, and internal medicine. The chapter provided the structure of composing the prompt with a hypothetical case study of peptic ulcer disease of a 45 year of women that underwent endoscopy for H. pylori detection.

BACKGROUND

Prompt engineering (PE) is an increasingly important skill set needed to converse effectively with large language models (LLMs) (White et al., 2023). Language models have a history dating back to the 1950s; however, it was not until the emergence of the BERT and GPT models in 2018 that language models truly gained widespread acceptance and became the dominant approach

DOI: 10.4018/978-1-6684-9300-7.ch005

in the field (Wang et al., 2023). It is known as prompt engineering, prompt design, or prompt programming.

PE used to design, enhance, and optimizing input prompts in order to effectively convey the user's purpose to a language model like ChatGPT is known as prompt engineering. To get the model to respond in a way that is accurate, pertinent, and cohesive, this practice is necessary. Proper prompt engineering is now a crucial skill for users who want to fully utilize ChatGPT and obtain the best results in a variety of applications as language models continue to improve.

Table 1. The iterative process of composing prompts

Purpose	Prompt
Subject	Subject terms Keywords
Modifier	Question Refinement Alternative Approaches Cognitive Verifier Refusal Breaker
Solidifier	Pattern recognition Error analysis Fine-tuning Citation/Reference
Variation	Alternative terms Synonyms
Weightage	Priority terms Exclusion terms Mixing inclusion and exclusion terms

Case Study: A Hypothetical Case Study of Peptic Ulcer Disease of a 45-Year-Old Woman Who Underwent Endoscopy for *H. pylori* Detection

Conditioning the model on specific keywords: We can provide the model with specific keywords related to peptic ulcer disease, such as "gastric pain," "stomach discomfort," and "endoscopy for H. pylori detection," so that it knows what the patient's symptoms and diagnosis are. Providing example outputs to guide the model's responses: We can provide the model with sample explanations of peptic ulcer disease and endoscopy that are written in patient-friendly language and that avoid technical jargon. For example: "Peptic ulcer disease is a condition where painful sores develop in the lining

4 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/how-to-use-prompt-engineering-forchatgpt-in-medical-education/329830

Related Content

Self-Organization and Peirce's Notion of Communication and Semiosis

João Queirozand Angelo Loula (2011). *International Journal of Signs and Semiotic Systems (pp. 53-61).*

www.irma-international.org/article/self-organization-peirce-notion-communication/56447

Privacy Preserving Fuzzy Association Rule Mining in Data Clusters Using Particle Swarm Optimization

Sathiyapriya Krishnamoorthy, G. Sudha Sadasivam, M. Rajalakshmi, K. Kowsalyaaand M. Dhivya (2017). *International Journal of Intelligent Information Technologies (pp. 1-20).*

www.irma-international.org/article/privacy-preserving-fuzzy-association-rule-mining-in-data-clusters-using-particle-swarm-optimization/179297

Cloud Computing Adoption for Small and Medium Enterprises in Engineering and Environmental Aspects

S. Abirami, Santosh K. C., R. Somasundaram, Kavitha K. S., Harshita Gangadhar Patiland Sureshkumar Myilsamy (2024). *Harnessing High-Performance Computing and AI for Environmental Sustainability (pp. 305-333).*

www.irma-international.org/chapter/cloud-computing-adoption-for-small-and-medium-enterprises-in-engineering-and-environmental-aspects/347372

Experimenting with Proxy Agents in Online Combinatorial Auctions

Soumyakanti Chakraborty, Anup Kumar Senand Amitava Bagchi (2014). *International Journal of Intelligent Information Technologies (pp. 56-75).*

 $\underline{\text{www.irma-international.org/article/experimenting-with-proxy-agents-in-online-combinatorial-auctions/114959}$

Artificial Intelligence's Integration in Biomedical Engineering: Impacts on Diagnostics and Future Healthcare

Yashvi Agrawaland Basab Nath (2024). *Future of AI in Biomedicine and Biotechnology (pp. 223-238).*

 $\frac{www.irma-international.org/chapter/artificial-intelligences-integration-in-biomedical-engineering/348517$