
Managing Worldwide Operations & Communications with Information Technology 65

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Enterprise Architecture Using the
Zachman Framework: A Model Driven

Approach
Ali Fatolahi, University of Ottawa, 800 King Edward, P.O. Box 437, Ottawa, Ontario, Canada, K1N 6N5; E-mail: afato092@uottawa.ca

Stéphane S. Somé, University of Ottawa, 800 King Edward, P.O. Box 437, Ottawa, Ontario, Canada, K1N 6N5; E-mail: ssome@uottawa.ca

Timothy C. Lethbridge, University of Ottawa, 800 King Edward, P.O. Box 437, Ottawa, Ontario, Canada, K1N 6N5; E-mail: tcl@site.uottawa.ca

ABSTRACT
Many organizations are interested in building their enterprise architectures using
the Zachman framework. They hope to solve the problems of misalignment between
business processes and information systems along with gaining a desired level of
interoperability and flexibility in their IT environment. However, in most cases the
Zachman framework remains as a conceptual framework more than a pragmatic
one. This causes a serious doubt as to whether the enterprise could satisfy the
motivations of employing the Zachman framework. Model driven architecture
(MDA) is addressed in this paper as a framework, which is in a very high synch
with the Zachman framework. MDA provides a means of flexible reusable model-
driven development environment that is being applied in more and more situations
everyday. It is also based on commonplace technologies, which makes it popular
amongst software engineers and IT specialists. In this paper, we show that MDA
could be the key that opens the world of reality to the Zachman framework. Not
only does MDA have everything the Zachman framework needs to be practical,
but it also follows the same logical structure and very similar metadata language
as the Zachman framework.

Keywords: MDA, Zachman, Architecture, MOF, Conceptual Graphs.

1. INTRODUCTION
The Zachman framework (as firstly introduced Zachman (1987)) is considered
as of the major origins of Enterprise Architecture (EA) (Wilton, 2001). Accord-
ing to Schekkerman (2005), 25% of current EA-related activities are being done
using the Zachman framework, which is the highest rate amongst all the other
frameworks.

The Zachman framework aims at reducing the problems of building information
systems without strategic and/or business-related considerations. It categorizes
different stakeholders’ viewpoints into a fixed set of perspectives through which,
everybody could find the exact information he/she is interested in. The framework
also captures the knowledge of enterprise via abstracting it into a collection of
integrated features.

A key factor of the Zachman framework is that it promises the alignment between
business and technology because it provides all stakeholders with the same pat-
tern of information. However, this promise could not be realized without having
a mechanism to ensure that different viewpoints have correctly been transformed
to each other.

Another important issue is the ability of the Zachman framework to capture
the enterprise knowledge in an integrated scheme. In practice, it is very hard to
track this ability because modelers use different sets of models with no common
background. These problems alongside with other ones (Fatolahi & Shams, 2006)
mandate the use of the Zachman framework as a conceptual tool. This means
that enterprises could not benefit from all of the advantages of the Zachman
framework in practice.

Model driven architecture (MDA) is the OMG’s solution to increase model reus-
ability and design-time interoperability. MDA deals with model as an asset rather
than a cost. A very important feature of MDA is the facility to transform models

among different areas. Not only is it easier to build automatic model mappings
in the MDA context, but MDA could also be beneficiary when the model trans-
formation is done manually. MDA provides a collection of popular standards
beneath a common philosophy to facilitate the process of quality software design
and implementation.

We believe that MDA can be used as a source to supply all the modeling needs
of the Zachman framework. This is because MDA:

1. provides a strong approach for model transformation. This means that using
MDA, it is possible to build models, which are true transformations of each
other or at least very close mappings. This capability makes MDA a good
choice to solve the challenge of perspective transforming and tracking within
the Zachman framework.

2. provides a broad collection of flexible modeling standards based on a single
simple basic notation. Therefore, one can apply MDA-based modeling nota-
tions all over the Zachman framework with a high chance to preserve the
integrity of the enterprise’s knowledge.

3. separates modeling concerns just as the Zachman framework does.
4. levels metamodeling in the same way the Zachman framework does.
5. uses a metamodeling language that could be easily translated to the one used

by the Zachman framework.

In this paper we try to address some of the problems regarding the Zachman
framework using MDA. Employing the two frameworks with each other, we
hope for enterprise architectures that would be well defined and understood by
all the stakeholders because of the Zachman framework; ones that would be eas-
ily developed and maintained because of the popularity of the MDA framework
and its supporting tools.

The rest of this paper is organized as follows. In Sections 2, we introduce the
Zachman framework and MDA. In Section 3, we mention related work and discuss
the similarities and differences of the current research with the previous ones.
Section 4 addresses the adaptability of MDA and the Zachman framework with
an emphasis on metamodeling languages and levels. In Section 5, some issues
regarding the current research are discussed. At last, we provide a summary along
with a plan for future work in Section 6.

2. BACKGROUND
2.1. The Zachman Framework
Figure 1 is a depiction of the Zachman framework. The Zachman framework
consists of six rows and six columns. Rows represent different stakeholders’
perspective in building enterprise architecture. Columns are different ways in
which, we describe the same product for different purposes. Crossing each row
by each column, results in a cell, which contains a unique model.

As it can be seen in Figure 1, the first row is a definition of the context for the
enterprise. In the second row, the enterprise is modeled using business modeling
techniques. within the third row, the IT environment is conceptually modeled.
These design models are mapped onto technology dependent design models in
the fourth row. The fifth row contains implementation models. Since systems

66 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

development is often an outsourced task, which is not performed by the organi-
zation itself, this row is supposed to be out of context for the EA. The last row
corresponds to the real working enterprise.

Columns of the framework facilitate abstraction of the enterprise’s knowledge in
a way that is suitable for modeling purposes. Each column is supposed to answer
a single question regarding the enterprise. “What are important things for the en-
terprise?” is answered by the Data column. “How does it run?” is answered using
the Function column. “Where is it located?” is answered in the Network column.
“Who are acting within the enterprise?” is answered by the People column. “When
does it perform its businesses?” is answered using the Time column and “Why the
enterprise does the businesses?” is answered in the Motivation column.

2.2. Model Driven Architecture (www.omg.org/mda)
MDA proposes four different layers of modeling. The most top layer is the layer
of Computation-Independent Models (CIM). CIM represents models, which are
valid in spite of the computational options. Business models reside in this layer.
Then we have the layer of Platform-Independent Models (PIM). PIM acts as a
standpoint of systems/software design and architecture. However, it does not
contain any information about specific platforms. The third layer, Platform-Specific
Models (PSM) deals with the technological details of platforms. Here, logical
design models are expressed in terms of certain platforms. At the lowest level,
there are Implementation-Specific Models (ISM1). These are real-world objects
and components, which act as a running version of the system.

The Meta-Object Facility (MOF) (www.omg.org/mda) is the heart of MDA. MOF
provides a means of building new modeling languages and/or transforming differ-
ent languages each to the other. The MOF is composed of very simple but strong
enough elements to describe any other modeling language. Although MOF does
not provide any specific notation, it is possible (and convenient) to use basic UML
Class modeling notations (with few considerations) to depict MOF models.

MDA admits two levels of MOF-based languages. The first level addresses
languages, which are rooted in the MOF itself. In fact, some of these languages
such as CWM and UML are even older than MOF, but eventually OMG has
refactored them to comply with the MOF. The second level deals with the UML
profiles. This level involves different UML extensions. In order to facilitate model
exchange amongst different tools and standards, XML Metadata Interchange
(XMI) is also a part of MDA.

3. RELATED WORK
The work closest to ours is reported by (Frankel, et al., 2003). This article shows
how different perspectives of the Zachman framework maps to the MDA ones.
This is shown in table 1. It also contains a valuable classification of MOF-based
models, which can be used to fill in the different cells of the Zachman framework.
For example, they propose CWM for the entire Data column or UML Scheduling
Profile for a fraction of the Time column. Although we accept this approach, our
paper extends the solution with bridging the metadata behind the two frameworks
and mapping their hierarchy of metamodeling.

Another interesting work is provided by (B´ezivin & Gerb´, 2001), where the
author discusses a precise definition for the MDA framework using CGs. It is
worth-mentioning that the paper is published when MOF was not commonplace.
The other work is published by (Fatolahi & Shams, 2006), which investigates
the capability and popularity of UML models, when applying to the Zachman
framework.

In summary, it can be concluded that the related-work has been generally focused
on recognizing appropriate models for different parts of the Zachman framework
and in the case of (Frankel, et al., 2003) a mapping between the perspectives of
Zachman framework and the stages of MDA. Although the work of (B´ezivin &
Gerb´, 2001) tries to define MDA using CGs, we do not see an explicit mapping
between CGs and MOF in it. Our research is focused on mapping MOF and CGs
alongside with discussing the similarity of the approach of the two frameworks
towards metamodeling in practice.

Figure 1. The Zachman framework

Perspectives of the Zachman Framework Layers of MDA
Planner N/A
Owner CIM

Designer PIM
Builder PSM

Sub-Contractor ISM
User N/A

Table 1. MDA layers vs. perspectives of the Zachman framework

Managing Worldwide Operations & Communications with Information Technology 67

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

4. ALIGNMENT
4.1. Separation of Concerns
Each row of the Zachman framework could be supplied with models from a certain
MDA layer. Our discussion excludes the first row of the Zachman framework.
This row represents the planners’ viewpoint, which is supposed to be full of
textual discriptions of different aspects of enterprise architecture planning, such
as constraints, important features, limitations, geographical distribution, etc. We
also do not mention the last row that is assigned to the real-working enterprise,
which is not related to modeling.

 The second row is the owners’ perspective. This is the row, which describes dif-
ferent features of the business. This row is the area of different business modeling
techniques. Since the models of this row are non-computational, we can use CIM
to build the models of this row.

The third row represents the designers’ viewpoint. Information systems are
designed in this row. However, this design is a platform-independent modeling
activity. Models to fill in this row come from PIM.

The standpoint of technology is indicated in the fourth row. In this row, design
is simply transformed into technology-dependent modelings. For example, if
we chose J2EE as the platform, design Entities would become Entity Beans
here. This is why, we select MDA’s PSM as our source for filling this row of the
Zachman framework.

Programmers’ role is compromised within the fifth row, where the building
blocks of the architecture are made up. Because this row deals wholely with the
implementation issues, we can feed it using ISM.

4.2. Model Assignment
Although there could be several valid approaches to assign a collection of mod-
els to each column of the Zachman framework, the important point is that both
(Frankel, et al., 2003) and (Fatolahi & Shams, 2006) show that the family of MDA
standards or some subsets of it could cover the Zachman framework. In fact,
based on one of the rules of the Zachman framework (Sowa & Zachman, 1992)
there must be a simple, basic and unique model for each column. Elements of
such a model for different columns are provided in table 2. As long as a language
can satisfy this rule it could be considered as a valid option. However, there is
no guarantee that the chosen language reaches an acceptable level of popularity.
Fortunately, this is the main advantage of the MDA, which deals with a family
of popular languages.

4.3. MOF vs. CG
A very important factor to guarantee the quality of final enterprise architecture using
the Zachman framework is its integrity. Integrity is gained through applying a set
of rules. A question is to know if MDA could facilitate the usage of the Zachman
framework. If MDA wanted to facilitate the usage of the Zachman framework,
it should support the integrity mechanism of the Zachman framework, which is
specified using the metadata language Conceptual Graph (CG) (Sowa, 2000).
We address this challenge by providing metamodels showing that the language
used to describe each framework could be formally defined using the language
of the other framework.

The metadata language of the Zachman framework is CG (Sowa & Zachman,
1992). There is a simple and interesting relationship between CG and MOF. Figure
2 shows how MOF could describe CGs. A conceptual graph is composed of some
concepts and relations. For example, a cat is on a mat, is a CG of two concepts,
cat and mat, and a relation, on. Usually a concept is being preceded by a quanti-
fier, which is a (or more formally exists) in this case. Figure 3 is a representation
of this CG. Quantifier a is not shown because it is the default quantifier. Figure 4
shows how this CG is synthesized using our metamodel. This is a very simple CG
but our metamodel is also capable to describe more subtle CGs, including nested
CGs. This is done through the generalization association between Conceptual
Graph and Quantified Concept in Figure 2.

We can see that each Concept plus an optional Quantifier results in a Quantified
Concept like “a cat”. This could be a target or a source concept. For example, as
it can be seen in Figure 4, “a cat” is recognized as a Source Concept and “a mat”
is realized as a Target Concept. A number of source and target concepts then ag-
gregate to a Conceptual Relation through a Relation, which is “on” in the case
of Figure 3 (and Figure 4). Finally, a Conceptual Graph is composed of some
Conceptual Relations.

On the other hand, consider Figure 5 as an essential part of MOF imported from
UML metamodel (OMG, 2005). Figure 6, presents a valid CG to express this
metamodel. Symbol, T, is used as a means of repeating a concept. As it can be
seen, multiplicity of MOF associations is shown using quantifier {*}, which means
a set of concepts. In Figure 6, a “meta” relation represents the generalization from
the general type toward the specific type. An “own” relation is used to show the
aggregation association among two types.

What? How? Where? Who? When? Why?
Entity
Relation

Function
Argument

Node
Link

Agent
Work

Time
Cycle

Ends
Means

Table 2. Essential modeling elements for columns of the Zachman framework

Figure 2. MOF metamodel for conceptual graphs

Figure 3. A cat is on a mat CG

Figure 4. Synthesizing the CG of Figure 3 using the metamodel in Figure 2

Conceptual Graph

Source Concept
Target Concept

Quantifier

Quantified Concept

0..1

1

Concept

1

1 1

0..1

1

1

Conceptual Relation

1..n

1

1..n

1

1..n
1

1..n
1 1..n

1
1..n

1

Relation

1

11

1

MatCat On

matcat ona

Concept

Quantifier
Relation

Quantified Concept

a cat a mat

Target ConceptSource Concept

A cat is on a mat

Conceptual Graph

A cat on a mat

Conceptual Relation

68 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

4.4. Metamodeling
An important question would be the ability of MDA to match with the hierarchi-
cal structure the Zachman framework provides to maintain reusable and scalable
enterprise architectures. We provide general guidelines and ideas to apply MDA
at different abstraction levels.

The Zachman framework is not just a pattern to build enterprise architectures;
it also provides a mechanism for maintaining the enterprise knowledge. This
mechanism guarantees the ability and scalability of the enterprise architecture.
This means that the framework makes it possible to change the enterprise at any
time using the stack of architectures Figure 7, shows the stack of the Zachman
frameworks (Inmon, et al, 1997). MDA has the same mechanism to supply the
framework with the models required for each level of this stack. This mechanism
is defined within table 3.

According to Figure 7:

1. The framework at level 0 represents the architecture framework for the products
of the enterprise. This product could be a software package or an airplane. A

product is composed of real working objects, i.e. objects with certain serial
numbers. This level could be equivalent to MDA’s M0.

2. Architecture for the enterprise itself is modeled within the level 1. The enter-
prise architecture at level 1 defines the resources and methods through which,
the enterprise generates its products. Thus, this level is a supplier for level
0. Since this is the specific enterprise that produces certain products of level
0, architects have to elaborate it using domain-specific models. Therefore,
level 1 grabs its modeling essentials from MDA’s M1.

3. Level 2 deals with planning, modeling, building and maintaining the enterprise.
Enterprise engineers reside at this level. The enterprise engineering framework
consists of tools and methods required to define different enterprises. Metamod-
els are critical for such an activity. Enterprise engineers need metamodels to
extend them for the specific aspects of certain enterprises. Using MDA, they
can select metamodels from M2. They may extend UML Activity Models to
describe the enterprise’s workflow or create profiles of CWM to define the
enterprise’s warehousing mechanism (both will then appear at level 1).

4. Finally, there is the Repository Framework at level 3. This is the most abstract
framework, which is used to manage enterprise engineering tasks. In fact,
enterprise engineers refer to this framework as a general source for all the
materials they need in order to develop or maintain an enterprise. Because
metamodels are used as a means of enterprise engineering, the repository
framework as the supplier of the enterprise engineering framework must also
provide a mechanism of handling metamodels. This is why we assign MDA’s
M3 to this level. MOF is used as the metametamodeling language for all the
languages and standards of level 2. It also assures the interoperability of the
enterprise models, resulting in everything the Zachman framework promises
for: interoperability, flexibility and maintainability.

Table 4 summarizes the mapping of metamodeling layers of both frameworks.

5. DISCUSSION
Despite of all the similarities, there are some differences between the Zachman
framework and MDA. The concept of platform in MDA is different from the
similar notion within the Zachman framework. From the viewpoint of the Zach-
man framework all technological platforms are considered the same and are ad-
dressed within the fourth row. For example, Oracle DBMS and .Net framework
both belong to a unique category. The case is not the same with MDA, where the
architect has to define his/her purpose of the platform explicitly. As a result, a
platform-independent model is not necessarily a pure logical model. For example,

Figure 5. A part of a UML metamodel expressed using MOF

Figure 6. The conceptual graph describing the UML metamodel of Figure 5

Figure 7. The stack of the Zachman framework

Association

Classifier

Property

Operation

Class

0..1

n

0..1

n

n

0..1

n

0..1

n
+superClass

n

+class

+ownedOperation

+ownedAttribute

+class

Class

Classifier meta

Association

Attribute: {*}

owns

Operation: {*}

T: {*} owns

3- Repository Framework

2- Enterprise Engineering Framework

1- Enterprise Framework

0- Product Framework

spplies

engineers

produces

uses

extends

realizes

Table 3. MDA metamodeling mechanism

M3
(MOF)

Metametamodeling layer, including the most abstract
materials required to build new languages and
interoperability standards.

M2
(UML, CWM, …)

Metamodeling layer, providing the notation and
formalism that can be used to model specific domains
and systems. This layer is fed by M3.

M1
(User Model)

Projections of M2 in terms of certain user require-
ments. This includes different extensions of M2 to
model the specifications of a certain subject. Ex-
amples are UMP profiles.

M0
(Runtime Model)

Runtime objects. Running versions of M1.

MDA Metamodeling layer The Zachman Framework
M3 (MOF) Repository Framework
M2 (UML, CWM, …) Enterprise Engineering Framework
M1 (User Model) Enterprise Framework
M0 (Runtime Model) Product Framework

Table 4. Mapping the metamodeling mechanism of the Zachman framework and
MDA

Managing Worldwide Operations & Communications with Information Technology 69

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

a PIM may be independent from .Net but not from the Oracle DBMS; that is the
platform means just .Net.

The Zachman framework has a recursive nature. This means that each subset of
the framework could be a new framework by itself. For example, as we discussed,
the enterprise framework is a product of the Function column of the enterprise
engineering framework. MDA does not support this recursiveness explicitly. The
mapping of table 4 seems to resolve this problem, but yet the Zachman frame-
work support of the recursive frameworks could be different than the structure
of Figure 6.

A possible solution to this conflict is to consider different technologies and standards
as members of different columns in the fourth row. For example, we have DB2 in
the first column and DCOM in the second column. Since the logic of the Zach-
man framework is recursive, it is possible to think about each cell independently
(Sowa & Zachman, 1992). We could isolate the cell at the fourth row and first
column; then restrict the concept of platform to DB2, resulting in DB2 Specific
Model. We iterate this process within other columns. (e.g. considering DCOM as
the platform results in DCOM Specific Model for Function column)

6. CONCLUSION AND FUTURE WORK
So far, we have shown that MDA could fit with the Zachman framework very well.
Since MDA supports a large collection of standard modeling languages, there is a
good chance to assign a subset of MDA to each cell of the Zachman framework.
Further, there are many tools and methodologies in use or under development in
accordance with MDA.

One of the main benefits of MDA is that it facilitates the process of model trans-
formation. On the other hand, model transformation is one of the major threats
against the Zachman framework. MDA makes model transformation easier,
more accurate and automated. Here, we find a big set of open problems, which
are different MDA mapping functions and transformation paths throughout the
Zachman framework.

This research is not just about a conceptual mapping between the Zachman
framework and MDA. We believe that these two frameworks could collaborate
with each other to build EAs in practice. The purpose of Sections 4.3 and 4.4 was
to dismiss the gap between conceptual frameworks and practical applications.
According to 4.3, MOF could be translated to CG; so, every model described
with MDA is capable to fit within the Zachman framework. The discussion of the

Section 4.4 promotes the ability of architects to support all levels of the Zachman
framework using MDA.

As our future research, we will mainly focus on different MDA transformation
functions to convert and/or track models through adjacent rows of the Zachman
framework. Besides, we will be declaring the application of the notion of platform
in MDA using the recursive logic of the Zachman framework. Clearly, we will
need more and more tools and techniques to support our research. Therefore, this
would be an indispensable track of our future research too.

REFERENCES
B´ezivin, J., Gerb´, O. (2001). Towards a precise definition of the OMG/MDA

Framework. Proceedings of Automated Software Engineering 2001.
Fatolahi, A., Shams, F. (2006). An Investigation into Applying UML to the Zach-

man Framework. Journal of Information Systems Frontiers, Special Issue on
Enterprise Architecture, Volume: 8, Issue: 2, 133 – 143.

Frankel, David S., et al. (2003, September). The Zachman Framework and the
OMG’s Model Driven Architecture. Business Process Trends, from Object
Management Group database.

Inmon, W., Zachman, J. A., Geiger, J. G.(1997). Data stores, data warehousing and
the Zachman framework, Managing enterprise knowledge. McGraw-Hill.

OMG. (2005). Unified Modeling Language Superstructure. Website: http://www.
omg.org/docs/formal/05-07-04.pdf

Schekkerman, J. (2005). EA Survey Trends 2005 Results. Website: http://www.
enterprise-architecture.info/Images/EA Survey/Enterprise Architecture Survey
2005 IFEAD v10.pdf

Sowa, J. F. (2000). Knowledge Representation, Logical, Philosphical and Com-
putational Foundations. Brooks/Cole.

Sowa, J. F., Zachman, J.A. (1992). Extending and formalizing the framework for in-
formation systems architecture. IBM Systems Journal 31, No. 3, 590-616.

Wilton, David R. (2001). The Relationship between IT Strategic Planning and
Enterprise Architecture Practice. Journal of BattleField Technology, Vol 4,
No. 1, 18-22.

Zachman, John A. (1987). A framework for information systems architecture.
IBM Systems Journal 26, No. 3, 276-292.

ENDNOTE
1 This is not an official term from OMG.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/enterprise-architecture-using-zachman-

framework/33023

Related Content

Actor-Network Theory Perspective of Robotic Process Automation Implementation in the Banking

Sector
Tiko Iyamuand Nontobeko Mlambo (2022). International Journal of Information Technologies and Systems

Approach (pp. 1-17).

www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-the-

banking-sector/304811

Use of Bitcoin for Internet Trade
Sadia Khalil, Rahat Masoodand Muhammad Awais Shibli (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 2869-2880).

www.irma-international.org/chapter/use-of-bitcoin-for-internet-trade/183998

Cloud Computing as a Model
Sathiadev Maheshand Kenneth R. Walsh (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 1039-1047).

www.irma-international.org/chapter/cloud-computing-as-a-model/112499

Towards an Understanding of Performance, Reliability, and Security
Ye Wang, Bo Jiangand Weifeng Pan (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 7588-7598).

www.irma-international.org/chapter/towards-an-understanding-of-performance-reliability-and-security/184454

Design of Library Archives Information Management Systems Based on Artificial Intelligence and

Multimedia Technology
Ying Li (2023). International Journal of Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/design-of-library-archives-information-management-systems-based-on-artificial-

intelligence-and-multimedia-technology/320234

http://www.igi-global.com/proceeding-paper/enterprise-architecture-using-zachman-framework/33023
http://www.igi-global.com/proceeding-paper/enterprise-architecture-using-zachman-framework/33023
http://www.igi-global.com/proceeding-paper/enterprise-architecture-using-zachman-framework/33023
http://www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-the-banking-sector/304811
http://www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-the-banking-sector/304811
http://www.irma-international.org/chapter/use-of-bitcoin-for-internet-trade/183998
http://www.irma-international.org/chapter/cloud-computing-as-a-model/112499
http://www.irma-international.org/chapter/towards-an-understanding-of-performance-reliability-and-security/184454
http://www.irma-international.org/article/design-of-library-archives-information-management-systems-based-on-artificial-intelligence-and-multimedia-technology/320234
http://www.irma-international.org/article/design-of-library-archives-information-management-systems-based-on-artificial-intelligence-and-multimedia-technology/320234

