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ABSTRACT
Exception handling during the execution of workflow processes is a frequently 
addressed topic in the literature. One important class of exceptions is those that 
represent predictable deviations from the normal behavior of the process that 
can be anticipated at design time. Such ‘expected’ exceptions are often caused 
by the occurrence of external events that are asynchronous with respect to the 
process.  The desired exception handling response to these events will often 
depend on the current state of process execution. One important aspect of this 
state is the relevant process instance’s progress through the process model, 
which can be expressed in terms of the set of currently executing tasks. In this 
paper, we present a qualitative discussion on issues relevant to the definition of 
policies for handling asynchronous, expected exceptions. First, we highlight the 
requirement for workflow control data to be referenced in the policies if these 
exceptions are to be handled in a meaningful way. We then demonstrate that the 
definition of exception handling policies is not a trivial exercise in the context of 
complex processes, and discuss correctness criteria for these definitions. Finally, 
we outline a methodology for policy definition to ensure that the policy for each 
event is complete and consistent with respect to all possible states of process 
execution for the relevant process model.

INTRODUCTION
Workflow technology is ideal for supporting highly repetitive and predictable pro-
cesses. However, many processes are faced with the need to deal with exceptional 
situations that may arise during their execution [4]. Workflows may be affected 
by different types of exceptions: system failures such as hardware and software 
crashes and logical failures or exceptions. Logical failures refer to application-
specific exceptional events for which the control and data flow of a workflow is 
no longer adequate for the process instance [10]. Many logical failures may be 
unexpected, and these must be handled manually on an ad hoc basis by knowledge 
workers. However, many exceptions are expected – the inconsistencies between 
the business process in the real world and its corresponding workflow representa-
tion can be anticipated, even if they might not be frequent [6]. That is, workflows 
describe the ‘normal behavior’ of a process whereas expected exceptions model 
the ‘occasional behavior’.  

Expected exceptions can be synchronous with respect to the flow of work, but 
most often they are asynchronous – that is, they can be raised at an arbitrary stage 
of the process, potentially during a long-duration activity [6]. This asynchronicity 
makes it difficult to model exceptions with ‘synchronous’ constructs like tasks 
and flows, but since the exceptions are strongly associated with the application 
domain, they are part of the semantics of the process and so therefore should be 
incorporated within the process definition [4]. Cancellations of customer orders 
and car accidents during a rental process are examples of asynchronous events.  

In some applications, there may be one standard desired response to the occur-
rence of such an exception event, regardless of the execution state of the relevant 
process instance. However, in most real world scenarios, reaction to the events 
will often depend on the state of the process instance in execution. While there 
are multiple aspects of the execution state of a process instance, we define ‘state’ 
as the ‘stage of progression’ of the process instance, as expressed through the set 
of currently executing tasks, for the purposes of this paper.

For example, consider a simple business process for processing customer orders 
consisting of sequential tasks Receive Order, Approve, Pack, Dispatch, and Bill. 
Suppose that the customer may cancel their order, provided that it is not ready 
for dispatch. Thus, the policy for this exception event consists of two rules: if 
the customer attempts to cancel the order after the pack activity is complete, 
the cancellation is to be rejected; and if the customer cancels their order before 
the pack activity is complete, compensation tasks are to be executed in order to 
perform a ‘semantic undo’ of the order. 

The focus of this paper is on defining such policies for handling expected excep-
tions that are based on external events that occur asynchronously with respect to 
the process. Exceptional situations are usually very complicated [8] and we argue 
that it is easy to define policies that may produce unintended execution behavior. 
In the following sections, we present a brief introduction to the basic principles 
of workflow specification and execution, and then summarize the related work. 
We then describe the definition of exception handling policies, demonstrate the 
complexity in reasoning about policies defined over complex process models, 
and discuss relevant correctness issues. Finally, we outline a methodology for 
the definition of ‘correct’ policies with respect to all possible states of process 
execution. We conclude with an outlook for future research.

WORKFLOW SPECIFICATION AND EXECUTION
Before we can consider exception handling, let us first briefly summarize the 
basic principles of workflow specification and execution that are required for 
the subsequent discussion. Before a workflow process can be enacted, it must 
be specified.  The process model describes the order of execution of tasks ac-
cording to the business policies and resource/temporal constraints. Each task (or 
activity) is a logical unit of work within a process that may be either manual or 
automated but performed by a single workflow participant. In this paper, we will 
adopt graphical process modeling notation whereby rectangles represent forks 
and synchronizers (concurrent branching constructs) and ovals represent choices 
and merges (alternative branching constructs). A process instance is a particular 
occurrence of the process, for example, a particular order represents an instance 
of an order processing workflow.

A workflow management system (WFMS) is a system that completely defines, man-
ages, and executes workflows. In this paper, we adopt the standard functionality 
for a WFMS, including states for activity execution, as presented in [14]. During 
process execution, the WFMS maintains internal control data that includes the 
internal state information associated with the various process and activity instances 
under execution. There are also two types of data that flows between activities. 
Workflow application data is manipulated directly by the invoked applications. 
Workflow relevant data (also known as ‘case data’), is the only type of application 
data accessible to the WFMS, and can be thought of as a set of global variables.  

RELATED WORK
Exception handling is not a new concept, and has attracted considerable attention 
in the literature. Many approaches for flexible process enforcement have been 
proposed. The first approach is to encode the entire workflow process through a 
set of rules, thereby ensuring complete flexibility. For example [3] and [7] present 
approaches where the process is described through a set of Event-Condition-Ac-
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tion (ECA) rules (c.f. [13]). However, while processes encoded through rules 
enable all predefined behavior to be enforced, it is well known that large sets of 
rules can interact in unknown ways (e.g. [13]). The importance of verification of 
the process model before deployment has been emphasized in [12]. Represent-
ing the entire process through sets of rules also makes it difficult to visualize 
the process, which is a drawback when it comes to validation and maintenance. 
Ultimately, since the process is validated and maintained by business domain 
experts, the process should be specified in an intuitive way. Therefore, as much 
of the process logic as possible should be represented in the graphical process 
model – that is, the entire core process, at a minimum, and ideally the exception 
handling functionality too.

As already noted, this paper primarily addresses the issue of policy definition 
for handling expected exceptions that are based on external events that occur 
asynchronously with respect to the process. (Readers are referred to [9] for a 
framework to support ad hoc interventions when dealing with unexpected excep-
tions.) Essentially, there are two approaches for incorporating exceptional cases 
into a process model – ‘exception rules’ and ‘exception workflows’ [11]. The 
first approach is to implement exceptions through an explicit exception rule base 
[11]. Each exception is modeled by an ECA rule, where the event describes the 
occurrence of a potentially exceptional situation, the condition verifies that the 
occurred event actually corresponds to an exception that must be managed, and 
the action reacts to the exception [4]. A different approach is presented in [10] 
where the core process is dynamically modified at run-time based on a set of rules 
– when exceptional events occur during process execution, the AgentWork system 
identifies the workflow instances to be adapted, determines the change operations 
to be applied, and automatically performs the change for those instances.  

Alternatively, exceptions can be modeled as workflow processes themselves [11]. 
This approach is taken in [2], which introduces the notion of Worklets, which are 
‘an extensible repertoire of self-contained sub-processes and associated selection 
and exception handling rules’. Choosing the most applicable worklet to execute 
in response to a particular exception is achieved by evaluating conditions that are 
associated with each worklet. These conditions are defined using a combination 
of current data attribute values and the current state of each of the worklets that 
comprise the process instance. It is noted that the set of states for a worklet-en-
abled process may be deduced by mining the process log file (c.f. [1]) but that full 
exploration of the specification of such conditions is yet to be completed.  

Another approach is to consider the exception handling processes as sub-processes 
within the core process. In the ‘event node approach’ discussed in [4], the workflow 
model includes a particular type of node, called an event node, which is able to 
observe asynchronous events and to activate its successor in the workflow graph 
when the event is detected. However, once again, it was noted that upon observation 
of an event, conditions ‘can be used to select, among several exception manage-
ment alternatives, the most adequate to deal with the current workflow state’ [5], 
and to our knowledge, this issue has not yet been addressed in the literature. The 
definition of such conditions is the focus of this work. 

EXCEPTION HANDLING POLICIES
An Exception Handling Policy (‘policy’) can be thought of as a set of ECA rules 
whereby for each such ‘policy rule’ (PR), the Action is a sub-process (‘exception 
handling fragment’ in [6]) that is to be performed on observation of an Event, if 
the process execution state satisfies a particular Condition. The process execution 
state could involve many elements such as resource information and case data 
values, but for the purposes of this paper, we assume that the ‘state’ is described 
only through the set of currently executing tasks. The action may or may not 
involve terminating currently active tasks for that process instance, as dictated 
by the business requirements. The impact of the exception on the core process 
comprises the ‘resolution’ phase of the exception handling procedure, and while 
we acknowledge the importance of this phase, we focus our attention on the 
‘detection’ and ‘diagnosis’ phases only in this paper (c.f. [11]).

While such policies could be defined and enforced through a set of rules, we 
emphasize that the underlying principles are the same if the exception handling is 
incorporated into the process model. We will adopt the event node approach for this 
discussion but it should be noted that these observations are generic and therefore 
applicable even if a worklet-style approach is adopted. For the sake of illustration, 
we distinguish a type of activity that assists with process coordination, called an 
event listener, which corresponds with the notion of an event node described in [4]. 
An event listener is an automated task that automatically completes on detection of 

a specific event. We emphasize the special role of these tasks in graphical process 
models by differentiating them with a two-line boundary. Event listeners allow 
the WFMS to observe relevant events asynchronously from the standard process 
in execution, enabling an immediate reaction to the event occurrence (following 
completion of the event listener task). This approach is also attractive because 
the exception handling functionality is incorporated into the process model but, 
due to the modular nature of the model, it is trivial to construct a view of the core 
process (or isolate a particular exception) for visualization purposes. It is also very 
extensible because the core process does not have to be modified. The example 
order process, incorporating the exception policy described earlier, is depicted in 
Figure 1. Observe the different process behavior on observation of the cancellation 
event according to the current state of the process instance.

Some of this exception handling process logic can be captured in the process 
model through the position of the event listeners – they can be placed at ap-
propriate points such that if the event occurs before then, it is not observed by 
the process instance and therefore no action is taken. However, it will be usually 
be the case that a decision is (also) required to be made about how to handle the 
exception based on the workflow control data after it has occurred. To achieve this 
functionality (using standard modeling constructs, at least), a choice is required 
to be placed in the process model after the event listener activity to enforce the 
different PRs, where the choice conditions describe the status of the underlying 
process instance. 

Generally, the conditions for choice constructs in a workflow process are based 
on case data that is generated during the activities that comprise the process (for 
example, an insurance application might undertake different treatment depend-
ing on whether it has been approved, with this decision being made during the 
execution of an activity). However, in order to enforce exception handling poli-
cies, workflow control data must also be referenced in the choice conditions. As 
already noted, this is a different type of data, maintained in the workflow log. From 
a specification point of view, there is no requirement that the choice conditions 
be defined on workflow relevant data only. We note that this reference to control 
data may impact on the underlying data model and system design, but we assume 
that such issues are resolved for the purposes of this paper. 

CORRECTNESS ISSUES AND POLICY DEFINITION 
METHODOLOGY
We now consider the issue of correctness of exception handling policies. Note 
that we refer here to structural correctness rather than semantic correctness (that 
is, ‘verification’ rather than ‘validation’) since semantic validation depends on the 
particular application domain and so cannot be automated. We argue that there 
are two primary correctness criteria for exception handling policies – consistency 
and completeness. Consistency implies that no states have multiple actions de-
fined for them, and completeness implies that there is an action defined for every 
possible execution state.  If the exception handling behavior is incorporated into 
the process model then the choice conditions to be evaluated following the event 
listener must be mutually exclusive and collectively exhaustive, respectively, to 
satisfy these properties. 

In graphical process models with no branches in the core process, each process 
instance is executing exactly one task at any point in time, and so these conditions 
are relatively simple to specify and verify. However, when concurrent branches 
are introduced into the process model, each process instance may be executing 
multiple activities at any point in time, and all combinations of these activities 
must be considered when defining policies. For example, for the process model 

Figure 1. Example scenario: Cancellation of customer order

Receive 
Order

Receive 
Cancellation

Process 
Cancellation

Reject 
Cancellation

Choice

Approve Pack Dispatch Bill

‘Pack’ not yet complete

‘Pack’ complete



182 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

depicted in Figure 2, the possible states are: (1), (2, 4), (3, 4), (2, 5, 6), (2, 5, 7), 
(2, 8), (3, 5, 6), (3, 5, 7), (3, 8), (2, 9), (2, 10), (3, 9), (3, 10) and (11). 
In general, it is difficult to reason about the correctness of policies when the 
process contains a large number of activities and choice/split structures. Since a 
thorough consideration of all possible states for a process instance is a complex 
task, it is therefore plausible and perhaps even likely that process designers may 
inadvertently omit one or more states when defining policies. For example, if 
one PR deals with the case where an event is observed ‘before’ reaching state (3, 
5, 6) and another PR deals with the case where an event is observed ‘during or 
after’ reaching that state, the required behavior for the case where the instance 
state is (2, 5, 6) is not defined, and so the policy definition is not complete. Note 
that the intention during specification may be that no reaction is required in this 
case, but a case could be made for requiring the definition of a PR for all such 
states with a corresponding action of ‘No Action’, in order to make it explicit 
that all states were indeed considered during the definition of the policy but that 
exception handling behavior is not required in particular situations. This require-
ment for completeness would help to ensure that the exception handling policies 
are an accurate and complete source of ‘process knowledge’, making it easier to 
understand, verify and ultimately maintain the policies. 

The consistency of the policy should also be checked to ensure that if an excep-
tion event is observed, there is only one possible way of handling the exception. 
As for completeness, this property is not trivial to check in policies defined on 
complex processes. For example, a policy that is defined such that an action is 
performed if an event is observed ‘after’ state (2, 4) and another is performed if 
an event is observed ‘during or before’ (3, 5, 7) is inconsistent because there is 
a conflict for state (3, 5, 6) – both policies apply in this case, which may or may 
not have been intended. 

In addition to being complete and consistent, PRs should be defined only for 
valid states of the process instance, otherwise the policy will be unnecessarily 
complicated with ‘noise’. This ‘simplicity’ can be considered a secondary cor-
rectness criterion for exception handling policies. For example, the specification 
of a PR for (2, 4, 9) is also erroneous since this combination of activities is not a 
valid state due to the choice construct in the process model.  

We argue that tools should be provided to either prevent errors from being intro-
duced in the first place or to detect errors in the model before deployment, just as 
for the specification of the core process model. In the remainder of this section, 
we briefly propose a systematic method for the specification of policies in line 
with the former approach. 

First, all tasks are assigned unique identifiers, and all instance sub-graphs are 
generated (c.f. [12]). The set of all possible states is then generated for each 
instance type, and the union of the sets is the set of possible states for the process 
model. Clearly, the set of states could be large – the cardinality is dependent on 
the number of forks in the model, branches for each fork, and activities on each 
branch. However, all cases must be considered in order to prevent erroneous 
policies being defined. Also, since this set is a feature of the process model, it 
can be reused to define policies for an arbitrary number of events, once it has 
been generated.

The set of states is then partitioned for each policy, with one PR (and action) per 
partition. We call the set of states in each partition the scope of a PR – that is, the 
set of states of execution for which the action associated with the PR is relevant. 
Thus, each PR has an event to be observed, a scope, and an action to be performed 

if the execution state at the time of event occurrence is contained within the set 
of states comprising the scope. 

Once the policies have been defined, the method for enforcing them clearly 
depends on the exception handling approach that is adopted. However, if only 
event listeners and other standard workflow modeling constructs are employed, 
the event listener is immediately followed by a choice construct in the process 
model, and the scope of the policy corresponds to the choice construct condition 
that must be satisfied for the relevant sub-process to be executed. That is, each 
state corresponds to a logical disjunct in the choice condition that must be satisfied 
for the action associated with the policy to be performed. Upon observation of the 
event (and completion of the event listener activity), the condition expressions 
are evaluated using the current control data for the instance. In order to ensure 
completeness and consistency of the policy definition, every state must be a 
disjunct of exactly one condition for each exception event. The condition on one 
of the alternative branches will always be satisfied and the action (sub-process) 
associated with the relevant policy is then performed. 

CONCLUSIONS AND FUTURE WORK
Although workflow exceptions occur infrequently, their handling should be 
automated whenever possible. In this paper, we discuss the definition of poli-
cies to handle expected, asynchronous exception events. The desired reaction in 
response to these events will often depend on the current state of process execu-
tion, and we argue that the definition of exception handling policies for complex 
processes is a challenging exercise. We have introduced correctness criteria for 
such policies and outlined a methodology for policy definition to ensure that the 
policy for each exception event is correct with respect to all possible states of 
process execution.

In our future work, we will develop a methodology for the automated verification 
of exception handling policies for any arbitrarily complex workflow model. We 
will also relax the restriction that state is described only through process instance 
position (currently executing tasks) and consider case data and other types of 
workflow control data in policy definition and subsequent verification. Finally, we 
will consider the development of a software tool to assist with the specification 
and verification of exception handling policies.
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