
Managing Worldwide Operations & Communications with Information Technology 265

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Agile Approaches to Software
Maintenance: An exploratory Study of

Practitioner views
Warren Reyes, Deakin University, Burwood, Victoria 3125, Australia

Ross Smith, Deakin University, Burwood, Victoria 3125, Australia; E-mail: ross.smith@deakin.edu.au

Bardo Fraunholz, Deakin University, Burwood, Victoria 3125, Australia; E-mail: bardo.fraunholz@deakin.edu.au

ABSTRACT
Whilst there has been some research into the application of agile approaches to the
world of software maintenance, in this paper it is argued that there has not been
a coherent investigation that focuses on the collection and analysis of the views
and perceptions of agile software maintenance approaches held by experienced
software maintenance professionals. In this paper, we report such an exploratory
investigation, which has seeded the development of a simple framework for clas-
sifying collected views and perceptions. Specifically, a matrix framework has been
introduced, to facilitate comparison of the levels of understanding of the issues
affecting an agile adoption decision, and the extent to which an agile approach
has been implemented. Examples of organizations operating in all four cells of
this matrix have been presented.

Keywords: Software Maintenance, Agile Methods, Software Development

INTRODUCTION
Software maintenance has been long-recognized as placing before IT manage-
ment a critical challenge (Martin & McClure, 1983). Indeed, it can be argued
that maintenance decisions can be more critical to system users than decisions
taken during software development. Further, with the ever-increasing rate of
software development the burden of maintenance increases. Previously devel-
oped systems must be maintained to ensure their value and sustainability within
an organization. Martin & McClure (1983, p.3) defines software maintenance as
“an activity which imposes changes to a software system after its release to the
user or customer” and provides varied rationale including: correction of errors,
improving the overall design, interfacing a program to other programs and mak-
ing necessary enhancements.

Many potential solutions or “silver bullets” have been proposed over the years
to ease the burden of software maintenance, some boldly proclaiming a dramatic
reduction of the burden. While the adoption of some of the “silver bullets” has
addressed aspects of maintenance efforts, the burden of maintenance still remains
(Bennett, 2000; April et al., 2005). April et al. (2005) even argues that the mainte-
nance burden has been compounded by some of the proposed solutions.

Agile approaches have emerged as a challenge to the status quo as they propose
a substantially different, radical philosophy and process for developing software.
They are a collection of methodologies, processes and tools for the creative pro-
cess, that anticipate the need for flexibility and apply a level of pragmatism to
the delivery of a finished software product. They seek to deal with the limitations
of traditional development approaches, especially the inability to cope with an
unstable and rapidly changing requirements environment.

Whilst there has been some research into the application of such agile approaches
to software maintenance, we argue that there has not been a coherent investigation
that focuses on the collection and analysis of the views/perceptions of agile software
maintenance approaches held by experienced software maintenance professionals.
In this paper we report such an exploratory investigation, which has seeded the
development of a simple framework for classifying aspects of the collected views
and perceptions - a framework that may well underpin future studies.

BACKgROUND
In order to situate the present research it is necessary to explore the definitions
of both maintenance and agile approaches.

The term “maintenance” has been used since the early 1960s to describe the delivered
modification of software on an implemented system. Terms such as “change” or
“modification” commonly described activities carried out by personnel participating
in the original development, while maintenance usually implies the involvement
of personnel who were not party to the original development (Chapin et al., 2001).
As maintenance becomes increasingly complex, (including modifications and
announcements, adaptive modifications, changes reflecting shifts in processing
and environments), a more sophisticated definition of software maintenance is
required. Sousa and Moreira (1998, p. 265) in part address this when stating that
software maintenance can be viewed as “the modification of the software product
after its delivery to the customer, to correct errors, to improve its performance
or other attributes, or to adapt the product to a modified environment”. For our
purposes this is a suitably broad definition.

It is interesting to note that compared to the software development process,
research into the maintenance of software is comparatively sparse (April et al.,
2005). This may well be a consequence of the so-called software cost “iceberg”
(Chapin et al., 2001). Costs and issues associated with software development are
explicit and visible. Software maintenance costs surface gradually, later in the
system lifecycle, and as such are less visible to management. This has been long
argued. Swanson (1976) for example suggests that the metaphorical “iceberg”
infers that “much goes on here that does not currently meet the eye, and further
that our ignorance in this regard is, in a sense dangerous”. Software maintenance
is performed in response to software failures, environmental changes and in
response to change requests made by users. These activities can be classified as
Corrective Maintenance, Adaptive Maintenance and Perfective Maintenance. Yip
(1995) suggests that the maintenance component could be as high as 70-75 percent
of the overall life cycle cost. In the light of these figures it is perhaps surprising
that software maintenance is often overlooked and that it has not been subject to
the same intensive research as the software development process.

Of the research reported, a driving focus has been the role of maintenance as a
means of resolving software failure (Dekleva, 1992). In addressing this, how-
ever, there have been many foci of research interest, including: the quality of the
software and its documentation (Lientz & Swanson, 1981; Dekleva, 1992; Yip,
1995; Sousa & Moreira, 1998); coordination and management (Lientz, 1983; Yip,
1995, Sousa & Moreira, 1998); testing of software modifications (Dekleva, 1992;
Martin & McClure, 1983); and the domain-specific nature of software (Sousa &
Moreira, 1998). To address some of these problems a number of approaches have
been proposed, including the adoption of technologies such as relational data-
bases, fourth generation programming languages, object-oriented programming
techniques, structured programming techniques, reuse of modules, metrics and
computer-aided software engineering environments. All of these technologies,
activities and processes have the capacity to reduce, in part at least, the burden
of software maintenance.

It is important, however to recognize that the above address only a subset of
identified maintenance problems. In order to facilitate a holistic approach to

266 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

software maintenance some researchers (e.g. Svenssen & Höst, 2005; Poole &
Huisman, 2001; Schuh, 2001) have suggested that agile approaches may have
something to offer.

“Agile” or “light weight” software development approaches have emerged over
recent years. Proponents suggest that these approaches are revolutionary, and as
such have stimulated passionate debate within the industry. The core characteristics
and benefits of agile approaches are their emphasis on highly engaged and frequent
communication between project participants and clients. This facilitates frequent
and intuitive releases of products, which can be evaluated immediately. A further
characteristic is the claimed reduction in price to produce quality products in a
short period of time, without having to resort to short cuts (Avison & Fitzgerald,
2003). Examples of agile software development approaches include: eXtreme
Programming (XP); Scrum; Feature Driven Development (FDD); and Crystal
(Beck, 1999; Cockburn, 2002).

As a means of characterizing such approaches, the Agile Alliance (2006) has
enunciated the core values underpinning agile approaches, as:

• A means of uncovering better ways of developing software by doing it and
assisting others to do it;

• Valuing individuals, interactions, working software, customer collaboration
and responding to change as items of most value to practitioners or teams
who apply an agile approach; and

• Such considerations are valued over other considerations such as processes,
tools, comprehensive documentation, contract negotiation, and the strict
adherence to a plan.

Agile approaches have also been characterized in terms of the techniques/methods
that typically feature, including: Incremental Development; Time Boxing; MoSCoW
Rules; JAD workshops; Prototyping; the roles of Sponsor & Champion; and the
adoption of supporting Toolsets (Avison & Fitzgerald, 2003).

AgIle APPROACHeS AND SOFTwARe MAINTeNANCe
Lientz (1983) identifies the user-oriented nature of software maintenance as one
of the most critical challenges facing IT management. The advocacy of constant
and timely communication, coupled with ready feedback and iterative releases,
by proponents of agile approaches may, as such, be advantageous to software
maintainers. Maintainers can seek to address problems through collaboration
and communication with users, thus reducing the potential to introduce further
problems (Cockburn, 2002).

Agile approaches as an alternative to the traditional waterfall approach in mainte-
nance have been studied by several researchers. E.g. Poole and Huisman (2001)
demonstrate that an agile approach, XP, might be introduced into an organization
as a maintenance tool. However they have identified a strong correlation between
effectiveness and customer commitment to communicate with the maintenance
team. Schuh (2001) suggests, however, that agile approaches might not be a blan-
ket solution to problems faced by the development and maintenance functions.
Svenssen and Höst (2005) reinforce this view in their empirical study, suggesting
that agile approaches need to be adjusted or adapted to suit an organization’s
circumstances and situation, and that following each of the processes suggested
verbatim can be a recipe for disaster.

Studies conducted thus far have, in a sense, focused upon technical and procedural
activities and benefits, as opposed to building a realistic understanding of how
the broader philosophy of agile approaches might assist software maintainers and
users. We argue that there is a gap in substantial research, capturing the views
and perceptions of front line maintenance staff as to the potential capacity of
agile approaches to assist them in the performance of their day-to-day software
maintenance activities. The present study describes an exploratory study that lays
the groundwork for addressing this gap.

ReSeARCH APPROACH
To identify practitioners’ views and perceptions of the applicability of agile
approaches to maintenance, and to understand the factors that influence those
views and perceptions, we chose an exploratory, qualitative research approach,
administered through face-to-face semi-structured interviews. Eight participants
were chosen from a pool of maintenance practitioners, working in some seven

different organizations. All practitioners were working as maintenance officers
and had at least two years experience – some substantially more. Due care was
taken to ensure a range of different systems were represented, thus avoiding
domain or software-specific selection. Participants came from organizations of
various sizes and types, ranging from small businesses, maintaining web-based
applications, to large organizations operating sizable ERP systems and software.
Table 1 presents a summary of the participant profiles.

We acknowledge that the number of participants have limited the validity of find-
ings. However, being a preliminary exploratory study, the scope of this research
was set to finding some indicatory insights from practitioners, so as to provide a
platform for launching into further research investigations. Therefore, this small
sample was rendered sufficient.

INDUSTRy STUDy
To set the scene, the following statement from participant P2 characterizes the
view held by all concerning the challenge of software maintenance, as they live
it, day to day:

“… We have to deal with history and archaeology. And we recognize it, but time,
resources, and money constraints don’t allow you to re-architect the entire portfolio
in one hit. So you’re constantly battling the weight of the old product with all of
the measures of some of the newer modules. And that’s a tug of war that our sort
of business has to wrestle with.”

This characterization captures the essence of software maintenance, as a struggle
between legacy systems and the unrelenting need and demand for change and
progress. Further, an understanding of a system’s past is essential, to assist in
determining the future viability and applicability of a software system.

In characterizing the views/perceptions of the software maintainers we initially
report 4 primary findings. Subsequently (next section), we present a simple
framework which has been helpful in practically classifying the situations thus
observed in the participant organizations. Theoretically, these classifications may
be used for similar studies and could also be modified in accordance with the
further situational findings.

Finding 1: Software Modifications and Enhancements vs. Software
Corrections and Adaptations
Consistent with the extant literature, the participants confirmed that software
enhancements or modifications to an implemented software system are the most
significant maintenance activity they face (Lientz, 1983; Yip, 1995). For example,
P3 indicated that a high volume of requests is for the provision of upgrades and new
functionalities. This was corroborated by P5, P6&P7. It is noteworthy, however,
that Sousa and Moreira (1998) identify adaptive maintenance activities as the most
costly software maintenance activity, at odds with the present findings.

Table 1. Summary of participant profiles

Managing Worldwide Operations & Communications with Information Technology 267

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Finding 2: User/System Knowledge and Knowledge Management are
Crucial
Lientz and Swanson (1983) identify knowledge, programmer effectiveness, prod-
uct quality, time availability, machine requirements and system reliability to be
the factors of most pressing concern to maintainers. Consistent with the primacy
of knowledge in this list, participants in the present study emphasized the need
for user knowledge and system knowledge, and that the lack of documentation
and/or the ability to transfer knowledge, were key issues. This problem is further
compounded by a user’s/customer’s lack of understanding of the difficulties and
the issues surrounding the performance of software maintenance. P4 provided
insight by suggesting that:

“...from a customer viewpoint, they often say there’s a problem in the software,
it doesn’t do what I want it to do… (and) they would probably classify them as
software defects, but of course, if the functionality wasn’t in the original require-
ments specification; it’s not a defect, it’s a modification.”

To address this problem, and to introduce some form of knowledge management to
maintenance activities, P1, P3, P5&P6 proposed the standardization of practices,
and P4 suggested managing customer expectations by involving customers in both
the development and maintenance processes.

Finding 3: Prominence of Agile (or at least Flexible) Approaches in Present
Software Maintenance
Software maintenance, unlike software development is not requirements driven
but is rather event driven, triggered by unscheduled or random external events
(Kitchenham et al., 1999). Software organizations do not have defined processes
for the conduct of their software maintenance activities, or at best software main-
tenance is depicted crudely as the final activity in their software development
process (April et al., 2005). This view might suggest that software maintenance
follows an ad hoc process in many organizations, reflecting at best some coarse
steps similar to those depicted within the traditional “waterfall“ model of software
development. In the present study, this view was supported by P4.

In contrast, many of the participants in the present study indicated that they are
using some form of agile or at least flexible process. P1, P5&P6 reported that the
use of iterative and incremental development approaches is a means of deliver-
ing readily assessable and tangible maintenance benefits to users, coupled with a
means of prioritizing requests to deliver the optimum benefits. P1, P3, P5, P6&P8
also emphasized extensive customer participation and frequent feedback in the
processes they employed.

It should be noted, however, that the use of such methods, incorporating features
commonly associated with agile approaches, was not common to all participants.
Indeed P2 and P7 reported adherence to a more traditional “waterfall” based ap-
proach of eliciting maintenance requirements from users and executing change
requests.

Interestingly, while the approaches above have proven to be relatively successful,
the participants did not formally recognize these as involving the use of “agile
methodologies”. Indeed, as P4 suggested:

“Agile methodologies, in a software maintenance environment, don’t translate.
Not unless it’s a major, like 30 percent of the software is being changed then ok,
but if it’s a minor software defect change… if it’s changes to features… there are
stages to be done, waterfall stages. Define, design, code, test, implement.”

This view is supported by the studies of Svenssen and Höst (2005) who suggested
that a relative degree of adaptation and selection is required in order to success-
fully apply agile approaches to a software maintenance environment. Cockburn
(2002) and Beck (2005) have also suggested that organizations or practitioners,
interested in pursuing an agile approach, should select processes or methods
which they can successfully apply within their particular domain and undertake
a process of assessment and refinement, introducing new methods and refining
existing methods in order to elicit the most value and benefit from agile approaches
given their implementation context. Based on the responses collected from the
participants in this study, the impression is that the participants are either unaware

of the principles that drive agile approaches or that they are ignorant to such
drivers and principles. With responses such as “a bit more rigor in following the
process” (P5&P6) and “jumping into the code and fixing it (without appropriate
documentation or knowledge of the software system)” (P3), it is appropriate that
there is a degree of skepticism as to the notion of adapting an “agile methodology”
as a basis for maintenance. This was expressed most clearly by P4:

 “The word agile methodology is thrown around very much in the press. Agile
was a buzzword 15 years ago and every time I read a magazine from the IEEE
about every 3rd one had agile on the front cover. Each time you look at it, it means
something different.”

Finding 4: Superficial Understanding of Agile Approaches to Software
Maintenance
One of the most interesting findings in the present research, in particular given
the above observation of widespread use of methods/techniques that are com-
monly associated with agile methods, is that most participants, when probed,
actually had, at best, superficial formal understanding of agile methodologies.
Some participants who claimed an awareness of such approaches, when probed
demonstrated substantial misunderstandings of some of the basic tenets of agile
development. Boehm (2002) has previously observed this, expressing a view that
agile approaches appear less disciplined than they really are, with people almost
equating them to undisciplined hacking. Consistent with this, P3 stated:

“… how do we get good design in an agile approach? Because an agile approach,
certainly in our case, tends to be jumping in and writing the code.”

As an example of such misunderstandings, P5&P6, and to a limited extent P7, stated
that they attempt to be flexible in the performance of their maintenance activities
but in exercising this flexibility, they employ little adherence to set practices or
standards. In summary, they view agile approaches as less disciplined than they
really are, equating them, in a sense, to undisciplined hacking.

TAKINg THe DeCISION TO ADOPT AN AgIle
APPROACH TO SOFTwARe MAINTeNANCe
Reflecting upon the findings above, it is curious that whilst the maintainers
studied saw their focus, somewhat conventionally, to be upon software enhance-
ment and modification of implemented software systems (Finding 1) and argued
that such tasks must be supported by substantial extant documentation and as-
sociated knowledge transfer mechanisms (Finding 2), they seemed to employ
flexible approaches commonly associated with agile approaches which many
saw as not supporting system documentation (Finding 3). Further, in many cases
they displayed at best limited understanding of some of the basic tenets of agile
methodologies (Finding 4).

This raises an interesting issue. To exercise an informed decision to adopt an
agile approach in an organisational maintenance situation, it is reasonable to
expect that the maintainer should understand agile approaches and the associated
issues surrounding the operation of organisational maintenance processes. In the
study however, this prerequisite knowledge does not seem to have uniformly
been in place.

As a means of characterising the situations of the participants in the study, we
introduce a matrix framework (Figure 1), to facilitate a comparison of the levels
of understanding of the issues affecting an agile adoption decision and the extent
to which an agile approach has been implemented.

The matrix involves two axes. The first reflects an organization’s knowledge of
agile approaches. An organization can possess varying degrees of knowledge of
agile approaches, ranging from unaware or having a low understanding of agile
approaches, to possessing substantial understanding and knowledge.

This axis also takes into consideration an organization’s understanding of its
present software maintenance processes, in particular how their present processes
compare with agile processes.

The second axis records the level of implementation of an agile approach within
the organization’s software maintenance context, with organizations applying

268 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

agile approaches or methods in varying degrees ranging from no (or low) imple-
mentation of agile approaches, to a situation where they apply a substantial
implementation of agile approaches in support of performing their software
maintenance activities.

As such, organizations can fall within four distinct quadrants characterised by
different levels of understanding and different levels of implementation. These
quadrants have been termed: undiscovered; traditionalist; conformist; and devel-
oped, for the purpose of this study, as shown in Figure 1.

Figure 2 provides a visual representation of the quadrants in which all 8 study
participants fit, based on an analysis of the information collected. To illustrate the
assessments made, one example for each quadrant is briefly presented.

CONClUSION AND FUTURe ReSeARCH
This research paper reports from an exploratory study that investigated whether
agile approaches might have the capacity to assist software maintenance prac-
titioners.

It was observed that the maintainers, somewhat conventionally, felt that their focus
should be on software enhancement and modification of implemented software
systems, which involves tasks supported by substantial extant documentation.
Conversely, they seem to employ flexible agile approaches, which have been
characterised as not supportive of such system documentation, with limited
understanding of the basic tenets of agile methodologies.

We argue that to exercise an informed decision to adopt an agile approach in an
organisational maintenance situation, the maintainer should understand the basic

tenets and associated operational issues. Based on the participant situations in the
study reported in the paper, a matrix framework has been introduced, to facilitate a
comparison of the levels of understanding of the issues affecting an agile adoption
decision and the extent to which an agile approach has been implemented.

The characterisation of organisations taking decisions concerning the adoption
(or non-adoption) of agile software maintenance approaches, as developed in this
paper, may well provide a framework for on-going study of software maintenance
practitioner views. Further, based on the indicatory results of this study, which
is limited by the number of participants, structured empirical studies could be
initiated calling for participation from specific industry sectors and organisations
classified by size. As we have pointed out earlier, there is a gap in substantial
research, capturing the views and perceptions of front line maintenance staff as
to the potential capacity of agile approaches to assist them in the performance of
their day-to-day software maintenance activities. The results of empirical studies
seeded from this preliminary study could be of valuable contribution to the body
of knowledge in this area, benefiting both academia and practice.

ReFeReNCeS
Agile Alliance, 2006, “What is Agile Software Development?”, Online Resource

Site, Last Accessed: 26 September 2006, URL: <http://www.agilealliance.
org/intro>.

April, A., Huffman Hayes, J., Abran, A., & Dumke, R., 2005, “Software Mainte-
nance Maturity Model (SMmm): The Software Maintenance Process Model”,
Journal of Software Maintenance and Evolution: Research and Practice, Vol.
17, No. 3, pp. 197-223.

Avison, D., & Fitzgerald, G., 2003, Information Systems Development: Method-
ologies, Techniques and Tools, 3rd eds, McGraw-Hill, Berkshite, UK.

Boehm, B., 2002, “Get Ready for Agile Methods, With Care”, Computer, Vol.
35, No. 1, pp. 64-69.

Chapin, N., Hale, J.E., Khan, K.Md, Ramil, J.F., & Tan, W., 2001, “Types of Soft-
ware Evolution and Software Maintenance”, Journal of Software Maintenance
and Evolution: Research and Practice, Vol. 13, No. 1, pp. 3-30.

Cockburn, A., 2002, Agile Software Development, Addison-Wesley, Boston,
USA.

Dekleva, S., 1992, “Delphi Study of Software Maintenance Problems”, Proceedings.
International Conference on Software Maintenance, Orlando, FL, USA.

Kitchenham, B.A, Travassos, G.H., Mayrhauser, A.v., Niessink, F., Schneidewind,
N.F., Singer, J., Takada, S., Vehvilainen, R., & Yang, H., 1999, “Towards
an Ontology of Software Maintenance”, Journal of Software Maintenance:
Research and Practice, Vol. 11, No. 6, pp.365-389.

Lientz, B.P., 1983, “Issues in Software Maintenance”, ACM Computer Surveys
(CSUR), Vol. 15, No. 3, pp. 271-278.

Martin, J., & McClure, C., 1983, Software Maintenance: The Problem and its
Solution, Prentice-Hall, New Jersey, USA.

Poole, C.J., & Huisman, J.W., 2001, “Using Extreme Programming in a Mainte-
nance Environment”, IEEE Software, Vol. 18, No. 6, pp. 42-50.

Schuh, P., 2001, “Recovery, Redemption, and Extreme Programming”, IEEE
Software, Vol. 18, No. 6, pp. 34-41.

Sousa, M.J.C., & Moreira, H.M., 1998, “A Survey of the Software Maintenance
Process”, Proceedings. International Conference on Software Maintenance.

Svenssen, H., & Höst, M., 2005, “Introducing an Agile Process in a Software
Maintenance and Evolution Organisation”, Proceedings. Ninth European
Conference on Software Maintenance & Reengineering, Manchester, UK.

Swanson, E.B., 1976, “The Dimensions of Maintenance”, Proceedings. 2nd Inter-
national Conference on Software Engineering, Long Beach, CA, USA.

Yip, S.W.L., 1995, “Software Maintenance in Hong Kong”, Proceedings. Inter-
national Conference on Software Maintenance, Opio, France.

	

Figure 1. The “Agile Understanding Matrix”

 Undiscovered
• Low understanding of agile

approaches.
• Low or unknown

implementation of agile
approaches.

• Capacity to use agile
approaches for software
maintenance activities.

Traditionalist
• High understanding of agile

approaches.
• Limited if any

implementation of agile
approaches.

• Considered agile
approaches, but believe that
they have no capacity to
assist in software
maintenance.

• Believes in the Software
Development Life Cycle.

Conformist
• Low understanding of agile

approaches.
• High or substantial

implementation of agile
approaches.

• Applying an agile approach
but misunderstands its
purpose or uses agile
approaches in a way that is
misaligned and unsuitable
for the activities being
performed

Developed
• High use and

implementation of agile
approaches.

• High understanding of agile
approaches, their use and
applicability.

• Aligned use of agile
approaches with
purpose, adapting and
refining agile processes
where necessary.

Low
understanding of

agile approaches as
compared to

present
organizational
maintenance
approaches

Low implementation of
agile approaches

Significant
understanding of

agile
approaches as
compared to

present
organizational

approaches

Significant
implementation

of agile
approaches

Managing Worldwide Operations & Communications with Information Technology 269

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 2. Placement of participants within the “Agile Understanding Matrix”

P7 (Undiscovered Sector): P7 is an example of an
organization which possesses a low level of
understanding of agile approaches as well as a low
level of implementation of agile approaches,
methods or processes. P7 follows a simple process
to perform software maintenance, structured around
a define, design, code, test and implement
paradigm. As such, P7 may benefit from the use of
agile approaches, but as yet is largely ignorant of
them and so is not in a position to take an informed
decision.

P4 (Traditionalist Sector): P4 is an example of
an organization which falls into the traditionalist
quadrant. P4 displays a significant understanding
of both agile approaches and their present
organizational maintenance processes. P4’s
organization has taken an informed decision to
follow “traditional” software engineering
processes, and has a well-defined approach to the
performance of software maintenance tasks. The
team is of small to moderate size, with the culture
leaning towards order as opposed to chaos. Many
of the systems are critical, affecting many
individuals and system failure can potentially cost
the organization large amounts of money. This
participant is knowledgeable of agile approaches,
but does not believe that they can assist their
organization in the performance of their software
maintenance activities, and so has rejected such
processes.

P3 (Conformist Sector): P3 is an example of an
organization which falls into the conformist sector. P3
works within a department that maintains a large
number of applications, however the software being
maintained is not critical to the success of the
organization. There are many user requests for
enhancements and changes, and a substantial
degree of dynamism. However, while these factors
might suggest that the organization is agile in nature,
the responses given provided evidence that the
participant misunderstands, in part at least, the thrust
of an agile approach. Their justification for their use
of an agile approach is arguably based upon a
misinterpretation of the main thrust or principles
underpinning agile approaches, as would be the
situation where an organization is adopting an agile
approach as it is the current industry “buzz word”
instead of basing the decision upon a well developed
understanding of the principles and values of agile
techniques, coupled with an understanding of the
organization’s activities.

P1 (Developed Sector): P1’s team possesses a
high degree of knowledge about their software
maintenance processes and of agile approaches,
employing agile mechanisms deliberately in order
to facilitate improved communication channels
and the receipt of timely feedback concerning
software maintenance activities.

Examples include close proximity of the relevant
decision-makers and investment in documentation
as a means of transferring knowledge to software
maintenance personnel and other stakeholders
who may be unfamiliar with the software being
maintained. With regard to motivation, the
organization is highly motivated and committed to
the use of an agile approach in the performance of
software maintenance activities, also perceiving
maintenance as a form of software evolution, to
meet emerging user and environmental
requirements.

Significant
implementation

of agile
approaches

Low
implementation of

agile
approaches

Undiscovered Traditionalist

Conformist

Developed

• P7

• P5 & P6

• P4

• P3
• P1

• P8

• P2

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/agile-approaches-software-maintenance/33069

Related Content

Software Process Improvement for Web-Based Projects Comparative View
Thamer Al-Rousan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7549-

7562).

www.irma-international.org/chapter/software-process-improvement-for-web-based-projects-comparative-view/184451

Demand Forecast of Railway Transportation Logistics Supply Chain Based on Machine Learning

Model
Pengyu Wang, Yaqiong Zhangand Wanqing Guo (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-17).

www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-

learning-model/323441

Implementing a Customer Relationship Management (CRM) System
Dimitra Skoumpopoulouand Benjamin Franklin (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 1605-1615).

www.irma-international.org/chapter/implementing-a-customer-relationship-management-crm-system/183875

An Empirical Study of Mobile/Handheld App Development Using Android Platforms
Wen-Chen Hu, Naima Kaabouchand Hung-Jen Yang (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 6057-6069).

www.irma-international.org/chapter/an-empirical-study-of-mobilehandheld-app-development-using-android-platforms/184305

Modeling Rumors in Twitter: An Overview
Rhythm Waliaand M.P.S. Bhatia (2016). International Journal of Rough Sets and Data Analysis (pp. 46-67).

www.irma-international.org/article/modeling-rumors-in-twitter/163103

http://www.igi-global.com/proceeding-paper/agile-approaches-software-maintenance/33069
http://www.igi-global.com/proceeding-paper/agile-approaches-software-maintenance/33069
http://www.irma-international.org/chapter/software-process-improvement-for-web-based-projects-comparative-view/184451
http://www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-learning-model/323441
http://www.irma-international.org/article/demand-forecast-of-railway-transportation-logistics-supply-chain-based-on-machine-learning-model/323441
http://www.irma-international.org/chapter/implementing-a-customer-relationship-management-crm-system/183875
http://www.irma-international.org/chapter/an-empirical-study-of-mobilehandheld-app-development-using-android-platforms/184305
http://www.irma-international.org/article/modeling-rumors-in-twitter/163103

