
564  2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Guidelines for Developing Quality 
Use Case Descriptions

Yunan Chen, Drexel University, Philadelphia, PA  19104, USA; E-mail: yunan.chen@drexel.edu

Il-Yeol Song, Drexel University, Philadelphia, PA  19104, USA; E-mail: song@drexel.edu

ABSTRACT
A use case description (UCD) is used to document detailed behavior of a use case 
in order to communicate its functionalities to different stakeholders related to the 
use case. A UCD plays an important role throughout software project’s lifecycle. 
But there is no standard or widely-accepted approach for developing UCDs. 
They are developed based on the personal preference; both UCD formats and 
contents vary largely among different documenters. In this paper we present the 
seven-step use case documentation method. Our method integrates two writing 
rule sets and the three-level hierarchical use case evaluation method. The two 
writing rule sets cover syntax style and step rules that guide how to write each step 
in UCDs. The three-level hierarchical use case evaluation method helps use case 
developers evaluate UCDs from the overview level, the use case element level, 
and the sentence level. The recommended techniques of our paper is a synthesis 
of a thorough comparison of various UCD contents and formats discussed in 
literatures and our own experiences developed through a graduate Systems 
Analysis and Design class for many years. 

1. INTRODUCTION 
A use case approach is widely used to model system functionalities. A use case is 
a collection of success and failure scenarios in achieving a goal of an actor. A use 
case model consists of a use case diagram and a use case documentation (UCD). 
A use case diagram succinctly summarizes system behaviors from the point of 
view of actors. A UCD describes use case behaviors and functions in a narrative 
structured text file [1]. The documentation could be supplemented by diagrams 
such as activity diagrams and sequence diagrams. These diagrams provide a vi-
sualized flow of system interactions. The textual document, however, is the most 
common and understandable approach for UCDs [7, 8, 15]. 

A UCD is a communication tool which helps different stakeholders to understand 
the use case and provides supplementary information for system specification. As 
a communication channel, readability and understandable is the primary goal for 
a good UCD. Also since UCDs serve for software system specification, there are 
extra requirements than the regular text documentation. UCDs should clearly and 
completely depict system requirements for the specification. Narrative descriptions, 
however, usually tend to be ambiguous and lack a structure. There must be a set of 
coherent guidelines to direct documenters in content and structure selection.  

A UCD plays an important role throughout software project’s lifecycle. But there is 
no standard or widely-accepted approach for developing UCDs. They are developed 
based on the personal preference; both UCD formats and contents vary largely 
among different documenters [1-8, 11, 13-16].  In spite of the important roles of 
UCDs throughout the project’s lifecycle, there have been only few guidelines for 
producing good UCDs. The lack of accepted guidelines makes both writing and 
assessing UCDs difficult. It is very difficult to ensure the proper information to 
be conveyed to all related stakeholders. 

In this paper, we present the seven-step method for developing high quality 
UCD for a given use case diagram. Our method integrates two writing rule sets 
and the three-level hierarchical use case evaluation method. The two writing 
rule sets cover syntax style and step rules that guide how to write each step in 
UCDs. The three-level hierarchical use case evaluation method helps use case 
developers evaluate UCDs from the overview level, the use case element level, 
and the sentence level. The recommended techniques of our paper is a synthesis 
of a thorough comparison of various UCD contents and formats discussed in 

fifteen literatures and our own experiences developed through a graduate Systems 
Analysis and Design class for many years. 

The rest of the paper is organized as follows. Section 2 first synthesize the pre-
vious work on methodologies for developing UCDs and then give a literature 
review. Section 3 presents the seven-step UCD development method. Section 4 
concludes our paper. 

2. A REVIEW OF PRACTICES ON UCDS 
Our review on UCDs shows that there is no consensus on the well-accepted 
methodology for writing UCDs. Based on our reviews on literature as well as 
our own experiences, we believe that there are two aspects in improving the 
merits of UCDs as a communication and a specification tool: 1) a need for more 
concrete writing guidelines for UCD documenters; 2) a need for a methodology 
for assessing the quality of UCDs and removing mistakes.  

2.1 UCD Writing Guidelines
A UCD writing process is no easy task since different writing styles may affect 
the usability and readability of the UCD.  The review of the literature results 
in only a few simple writing guidelines. One notable guideline is the CREWS 
(Co-operative Requirements Engineering with Scenarios) Use Case Authoring 
Guidelines [3]. CREWS consists of eight specific rules.  It is believed to be the 
most complete guideline available till now. But even these rules are quite abstract 
and hard to remember [4]. To further enhance usability, Cox and Phalp simplified 
the CREWS to a four step guideline called CP rules [5]. A summary of CREWS 
and CP rules are shown in Table 1. We will discuss how to remedy the limitations 
of CREWS and CP rules in Section 3.5.2.

2.2 Literature Review on UCD Evaluation Approaches
UCDs need to be assessed before they are used for system design and imple-
mentation.  Some experts [6, 2, 7] mentioned that precision and clarity are key 

Table 1. A summary of CREWS and CP rules [3, 5]

CREWS rules CP rules
Style 1: Each sentence in the description 
should be on a new, numbered line. Alterna-
tives and exceptions should be described in 
a section below the main description and the 
sentence numbers should agree. 
Style 2: Avoid pronouns if there is more than 
one actor. 
Style 3: No adverbs or adjectives. 
Style 4: Avoid negatives. 
Style 5: Give explanations if necessary. 
Style 6: All verbs are in present tense format. 
Style 7: There should be logical coherence 
throughout the description. 
Style 8: When an action occurs there should 
be a meaningful response to that action.

Structure 1: Subject verb 
object. 
Structure 2: Subject 
verb object prepositional 
phrase. 
Structure 3: Subject 
passive. 
Structure 4: Underline 
other use case names.



Managing Worldwide Operations & Communications with Information Technology   565

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

factors for assessment. But they are quite subjective and hard to measure. Most 
researchers provide simple guidelines on how to write a description. But none of 
them addressed the issue of evaluating the whole UCDs. More comprehensive 
criteria are needed to solve this issue. Our review found two types of evaluation 
methods: Factor approaches that address important aspects that a good UCD must 
meet and Checklist approaches that lists questions for assessing a UCD. 

2.2.1 Factor Based Evaluation Approaches
Cox and Phalp [5] proposed a method called 4-independent factors - Plausibility, 
Readability, Consistent structure, and Alternative flows. Later, Cox, Phalp and 
Shepperd [8] came up with a more concrete 4-C use case heuristics which ad-
dress the communicability of use cases. The concept of 4-C consists of Coverage, 
Coherence, Consistency, and Consideration of alternatives. Phalp and Vincent 
further specified the 4-C heuristics into a 7-C approach [4] based on the empirical 
study they conducted. In the 7-C heuristics, every criterion consists of several 
sub-criteria. The 7-C heuristics include: 

1.  Coverage: the use case should contain required information in relevant 
details. 

2.  Cogent: the use case has to be complete, logical path follows the correct 
order.  

3.  Coherent: the written styles should be coherent to be understood. 
4.  Consistent Abstraction: use case should follow a consistent level of abstrac-

tion.  
5.  Consistent Structure: alternatives should be separated from the basic flow. 
6.  Consistent Grammar: Using simple present tense and avoid adverbs, adjec-

tives, pronouns, synonyms and negatives. 
7.  Consideration of Alternatives: alternatives should contain all the possible 

paths. 

2.2.2 Checklist Based Evaluation Approaches
Though the 7-C approach is quite comprehensive, it lacks the requirements of 
how much details should be included in the UCD. A checklist based approach 
assesses UCDs from various users’ perspectives: customers, designers and testers 
[9]. Another checklist approach to address the different users’ requirements is 3-C 
checklists proposed by Copeland [10]. The 3-C represents Complete, Correct and 
Consistent. This approach is to test 3-Cs of a use case from the point of view of 
syntax, domain, and traceability: 

• Syntax testing is to verify that a UCD contains correct and proper informa-
tion. Copeland claims that more than half of the use cases failed syntax test 
in a project he conducted.  

• Domain expert testing is to check whether the description meets the domain 
knowledge requirements. 

• The traceability testing is to ensure that all the functional requirements are 
represented in the UCD and can be traced back. 

3. THE SEVEN-STEP USE CASE DOCUMENTATION 
METHOD 
Our review showed that there are only few writing guidelines and inspection 
methods available.  It is necessary to propose a comprehensive and understand-
able method to documenting and assessing UCDs. In this section, we propose 
our seven-step UCD method which synthesizes existing rule sets and our own 
rules. Note that our method focuses on UCDs, rather than use cases themselves. 
Therefore, our method begins from developed use case diagrams.

We propose the following seven-step use case documentation method. It is a 
set of coherent guidelines covering UCDs from the very beginning to the end. 
Especially, our focus is on the Writing Rules and Evaluation method of UCDs. 
Due to the space limit, we only outline the steps without detailed examples. The 
seven steps of UCD development guideline are summarized in the Table 2. We 
discuss them in further details below.

3.1 Understand Actors and Their Goals 
The first step in writing a UCD is to understand the actors and their goals. Knowing 
who the actors are and what their goals are help developers write steps of a UCD. 
Goals of an actor are high level responsibilities of the actor in the system. A goal 
should represent “what” of a responsibility, not “how” of the responsibility.

3.2 Write a Use Case Goal in One Phrase for Each Use Case
In this step, a developer states the goal of a use case in one phrase using the format 
of Verb + Noun phrase. This simple phrase will define the specific goal at a high 
level term to distinguish one use case from another. For example, if we have a 
use case named “Process Rents” in a video rental system, the goal phrase could 
be “To capture rental items along with payment.”

3.3 Write an Overview Description for Each Use Case
The next step is to write a short summary of the actor-system interaction [11] in a 
few sentences. The brief description states an overview of what you are trying to 
achieve and the scope of the use case. At this step, use only business terms without 
any technology-oriented terms. For example, the overview description of the above 
use case could be “A store employee checks out rental items for a customer by 
calculating due dates and correct charges. The use case also includes checking for 
any overdue items. The store employee accepts payments for the items and any 
late payments. A rental slip is issued and kept by the store employee.”

3.4 Define the Precondition and Postcondition 
Preconditions and postconditons could help developers set up the boundary of the 
use case. These conditions would limit the sequences of interaction into a clearly 
starting and ending situation [11]. A use case that was performed earlier could 
affect the preconditions of the others; some use case is included or extended from 
others. All these relations will affect the content in a UCD. Before start writing the 
detailed steps, the documenter must understand the use case suite well and know 
relationships among the use cases so that relationships among use cases are repre-
sented and managed correctly, consistently, and completely. A good precondition 
is the one set by another use case if one needs to be executed after another. 

Postconditions are lists of the conditions that must be true after the use case 
successfully finishes. Larman suggests that postconditions be documented in a 
passive and past sentence to represent what already happened [15]. Larman also 
recommends the following three types of postconditions – (a) objects that need 
to be created/deleted (b) data that need to be changed, and (c) associations that 
need to be connected/disconnected.   

3.5 Write the Sequences of Interactions 
The sequences of interaction are the major part of a UCD. It carries the com-
munication and system design function of the UCD. We will give more focus in 
this step. There are three types of interactions.

3.5.1 Write the Main Successful Scenario
We begin with the main successful scenario first. It represents the most com-
mon and successful path. To identify the main successful scenario, we need to 
start from the triggering event, proceed step by step till the use case reaches the 
postconditions depicted before. 

3.5.2 Write the Other Successful Scenarios
We then write other successful scenarios that refer to alternative scenarios. They 
are less frequently executed than the main success scenarios, but still achieve 
the goal of the actor.

Table 2. The outline of our seven step guidelines

Step 1 Understand actors and their goals
Step 2 Write use case goals in one phrase
Step 3 Write an overview description in a few sentences
Step 4 Define the precondition and postcondition
Step 5 Write the sequences of interactions 
Step 6 Document non-functional requirements and other 

optional information
Step 7 Evaluate use case descriptions



566  2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3.5.3 Write Unsuccessful Scenarios
We then write other unsuccessful scenarios that refer to those scenarios that stop 
before the use case goal is achieved 

The Two Writing Rule Sets for Developing UCDs
CREWS and CP rules as we reviewed before focus on the syntactic aspect but 
miss the specific guidelines such as how to develop each step; what information 
to record in each step; and what information to avoid. To address these issues, we 
present synthesized rule sets for writing steps, integrating the ideas of CREWS 
and CP rules as well as our own experience. We present the guidelines in the form 
of two writing rule sets as shown in Table 3.

Rule set 1: The Syntax Rules - Describe steps in a precise and unambiguous 
way
• Use specific nouns: Avoid using vague terminology like information, data 

[11]. Specify the data to be created, deleted, changed or associated [1].  
• Avoid pronouns: If there is more than one actor involved in the UCD, using 

pronouns will confuse users on which actor this pronoun is referring to 
[3]. 

• No adverbs or adjectives: A UCD is to depict the goal fulfillment endeavors, 
not to write a story. Don’t use any adverbs or adjectives like appropriate, 
required, relevant or sufficient [3, 11]. Using these adjectives make the 
sentence ambiguous. 

• Use straightforward and specific verb: Avoid using verbs that have 
overloaded meanings such as get, keep, have, or do. Try to use specific 
verbs or associate an overloaded verb with an object as in find a customer 
name.  

• Using present tense: Write in “present tense” to describe what the system 
does, rather than what it will do or already done [11]. 

• Avoid negatives: Document use case in affirmative way, don’t use “not or 
no” in the description [3]. 

• Using active voice: Using direct and declarative statements started by an 
actor or the system [11]. For example: document a step as in “the system 
validates the amount entered” instead of “the amount entered should be 
validated by the system”. 

• Avoid compound sentences: Using simpler grammar [13], [4, 6] is recom-
mended to adapt “Subject verb object” or “Subject verb objects preposi-
tional phrase” style when documenting the flow of events. 

Rule set 2: The Step Rules - Each step should be only one logical step towards 
the use case goal  
• Each step must be a goal-driven movement: Describing the user’s step 

at user interface level is one of the most common mistakes in recording 
use case steps. For example: “system asks for name, user enters name, 
system ask for address, user enters address” could be replaced by “user 
enters name and address” [6].  

• Each action should have a system response: Any action is users’ request 
sent to the system. Thus it should not occur alone, there must be a system 
response associated to it [3].  

• Each step must represent only one logical step: State one logical step at a 
time. Do not combine two different steps that require a system interaction 
in one step. For example: “Search products and select the item” are two 
steps and should be documented in two steps because the system needs 
to display the output before the second action. [16]

• Describe your steps in a general tone rather a special case: The descrip-
tion should be general enough for all the possible variations in this step. 
For example: “Request one-year subscription” is a special case when 
applying for a subscription; it should be written as “Select the number 
of years of subscription.” [16].

• Describe in a right logical order of execution. Steps should be documented 
in a logically meaningful order of execution to show step-by-step proces-
sion. For example, adding a shipping charge during “Process payment” 
use case is logically in a wrong order [16].

• Do not include steps stated in the preconditions. [16].
• Do not use ambiguous expressions. For example, the following are 

ambiguous steps. “Subscriber enters in demographic information” and 
“Establish subscription data” [16].

3.6 Document Non-Functional Requirements and Other Optional Infor-
mation
For future references and improving understandability, non-functional require-
ments can be appended at the end of a UCD. Those non-functional requirements 
include business rules, performance requirements (response time and throughput), 
reliability requirements, usability requirements, security requirements, volume 
and storage requirements, configuration, compatibility requirements, backup and 
recovery, and any training requirements. 

3.7 Evaluation of UCDs 
   A UCD must be evaluated before actual releasing. The evaluation team should 
include all the possible stakeholders such as users and designers. We believe that 
the UCD evaluation process should be an iterative process in which each iteration 
evaluates different aspects. In this section, we present the three-level hierarchical 
use case evaluation method – overall level, use case element level, and sentence 
level. Evaluation should begin from the overall level to the use case element level 
and then to the sentence level. 

3.7.1. Check from the Overall Level 
This level is to assess the overall structure of a UCD. Issues judged at this level 
are whether the UCD contains an appropriate level of details and the structure 
of the use case templates are appropriate. A good UCD should convey all the 
required information but with no redundancy. There are two major factors that 
affect the levels of detail: 

• Stakeholders’ concerns: check if the UCD meets concerns of stakeholders 
such as end users, developers, and the testers [9]. 

• Different viewpoints: Depending on whether we adopt an external (black box) 
or internal (white box) view will affect how much details we need to add to 
the document and what kind of use case formats we select.

3.7.2. Check from the Use Case Elements Level
The next heuristic goes down to use case element level. It is to test whether the 
elements included in the UCD are content-wise appropriate and structurally sound. 
The testing could be conducted using the following 3-C rules [10]:

• Cogent: check the logical paths of the UCD and determine whether it follows 
a logically correct way.

• Complete: check whether the UCD provides a solution to the problem and 
check whether the entire possible alternatives are recorded.

• Consistent: check whether the UCD follow the same level of abstraction. The 
numbering in the main flow and alternatives should also be consistent.

3.7.3. Check from the Sentence Level
After checking the correctness of the use case elements, the next level heuristic 
goes down to the sentence level. Are the descriptions clear enough for users’ to 

Table 3. A summary of the rule sets

Rule 1:
The Syntax 
Rules 

Noun Use specific nouns  
Verb Use specific verb;

Use present tense;  
Avoid negatives

Adverbs No adverbs
Adjectives No adjectives
Pronouns Avoid pronouns
Sentences Use simple sentences;

Use active voice
Rule 2:
The Step 
Rules

Each step must be a goal-driven movement

Each step must represent only one logical step
Each action should have a system response
Describe steps in general tone rather a 
special case 



Managing Worldwide Operations & Communications with Information Technology   567

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

read and understand? Does each sentence make sense to the readers? The rules 
we proposed in Section 3.5 could be applied here for evaluation. 

The three hierarchical heuristics provide us with a more structured approach which 
allows users to assess the UCDs from general to specific perspectives. The evalu-
ation from a higher level iteration to a specific level gives assessors priorities in 
the evaluation process. This could potentially improve the evaluation results and 
improve the usability of the heuristics. 

4. CONCLUSION
In this paper, we have presented guidelines for developing quality UCDs. We have 
presented the seven step method for writing UCDs for a given use case diagram. 
Our method incorporates two sets of rules for writing UCDs. Our first rule set, 
the syntax rules, describes the syntactic guidelines of sentences. Our second 
rule set, the step rules, shows the guidelines for writing each step specifically in 
UCDs.  Our method also includes the three-level hierarchical use case evaluation 
approach– from the overview level, the use case element level, and the sentence 
level. The recommended techniques of our paper is a synthesis of a thorough 
comparison of various UCD contents and formats discussed in literatures and 
our own experiences developed through a graduate Systems Analysis and Design 
class for many years. We believe the methodology we proposed could serve as 
guidelines for UCD developers and help them to generate higher quality UCDs. 

REFERENCES
1. Overgaard, G. and Palmkvist, K.: Use Cases: Patterns and Blueprints. Addison 

Wesley, (2005).
2. Adolph, S. and Bramble, P.: Patterns for Effective Use Cases. Addison Wesley, 

(2003).
3. Ben Achour, C., Rolland, C., Maiden, N., and Souveyet, C: Guiding use case 

authoring:   Resultsof an empirical study. Proc. Fourth IEEE Int. Symposium 
on Requirements Engineering University of Limerick, Ireland, (1998). Re-
trieved 3/30/2006 from  

     http://sunsite.informatik.rwth-aachen.de/CREWS/reports.htm. Report Num-
ber: 93-31.

4. Phalp, K.T., Vincent, J.V., and Cox, K.: Assessing the Quality of Use Case De-
scriptions, Accepted for the Software Quality Journal, February 2006, (2006) 
Retrieved 3/30/2006 from http://dec.bournemouth.ac.uk/ESERG/kphalp/ 

5. Cox, K. and Phalp, K.T.: Replicating the CREWS Use Case Authoring 
Guidelines Experiment, Empirical Software Engineering Journal, Vol. 5(3). 
(2000)  245-268.

6. Cockburn, A.: Writing Effective Use Cases.  Addison Wesley, (2001).
7. Kulak, D. and Guinery, E.: Use Cases: Requirements in Context. 2nd ed. Ad-

dison.Wesley, (2003).
8. Cox, K., Phalp, K., and Shepperd, M.: Comparing Use Case writing guidelines. 

REFSQ’2001 - 7th International Workshop on Requirements Engineering: 
Foundation for Software Quality, Interlaken, Switzerland, 4th-5th June, 
(2001)

9. Rombach, H. D., Carbon, R., and Trapp, M. Software Engineering Processes and   
Measurement Research Group (AGSE), University of Kaiserslautern. (2003). 
Retrieved 3/20/2006 from: https://wwwagse.informatik.uni-kl.de/teaching/
se1lab/ss2003/SysAnfBearbeiten/ChecklistenMitPerspektiven_Analyse.pdf 

10. Copeland, L., Use cases and Testing, Testing UML Models, Part 1, Retrieved 
3/30/2006 from: http://www.stickyminds.com/sitewide.asp?Function=edeta
il&ObjectType=ART&ObjectId=3428

11. Bittner, K. and Spence, I.: Use Case Modeling. Addison-Wesley,(2003).
12. Texel, PP. and Williams, C.B.: Use Cases combined with BOOCH OMT UML. 

Prentice Hall PTR, (1997)  
13. Eriksson, H., Penker, M., Lyons, B.,and Fado, D.: UML 2 Toolkit. Wiley 

Publishing, int, (2004)
14. Leffingwell, D. and Widrig, D.: Managing Software Requirements. Second 

Edition. A Use Case Approach. Addison Wesley, (2003).  
15. Larman, C. (2005). Applying UML and Patterns: An Introduction to Object-Ori-

ented Analysis and Design and Iterative Development. Prentice Hall PTR.
16. Song, I.-Y.: Object-Oriented Analysis and Design Using UML: A Practical 

Guide.  Pearson Publishing, Boston, MA (2004).

Table 4. The three hierarchical heuristics of UCDs

Overall Does the UCD satisfy stakeholders’ concerns?
Is an external or internal viewpoint applied?

Ele-
ments

Cogent: Are the logic paths correct?
Complete: Are all alternative paths included?
Consistent: Are the levels of abstraction and numbering consis-
tent?

Sen-
tence

Check the syntax rules
Check the step rules



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/guidelines-developing-quality-use-case/33137

Related Content

Cultural Historical Activity Theory
Faraja Teddy Igiraand Judith Gregory (2009). Handbook of Research on Contemporary Theoretical Models in

Information Systems (pp. 434-454).

www.irma-international.org/chapter/cultural-historical-activity-theory/35845

Mathematical Representation of Quality of Service (QoS) Parameters for Internet of Things (IoT)
Sandesh Mahamure, Poonam N. Railkarand Parikshit N. Mahalle (2017). International Journal of Rough Sets

and Data Analysis (pp. 96-107).

www.irma-international.org/article/mathematical-representation-of-quality-of-service-qos-parameters-for-internet-of-things-

iot/182294

Tuning Drone Data Delivery and Analysis on the Public Cloud
Jose Lo Huang (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 207-216).

www.irma-international.org/chapter/tuning-drone-data-delivery-and-analysis-on-the-public-cloud/260187

Designing Engaging Instruction for the Adult Learners
Karen Weller Swansonand Geri Collins (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 1432-1440).

www.irma-international.org/chapter/designing-engaging-instruction-for-the-adult-learners/183858

The Information System for Bridge Networks Condition Monitoring and Prediction
Khalid Abouraand Bijan Samali (2012). International Journal of Information Technologies and Systems

Approach (pp. 1-18).

www.irma-international.org/article/information-system-bridge-networks-condition/62025

http://www.igi-global.com/proceeding-paper/guidelines-developing-quality-use-case/33137
http://www.igi-global.com/proceeding-paper/guidelines-developing-quality-use-case/33137
http://www.irma-international.org/chapter/cultural-historical-activity-theory/35845
http://www.irma-international.org/article/mathematical-representation-of-quality-of-service-qos-parameters-for-internet-of-things-iot/182294
http://www.irma-international.org/article/mathematical-representation-of-quality-of-service-qos-parameters-for-internet-of-things-iot/182294
http://www.irma-international.org/chapter/tuning-drone-data-delivery-and-analysis-on-the-public-cloud/260187
http://www.irma-international.org/chapter/designing-engaging-instruction-for-the-adult-learners/183858
http://www.irma-international.org/article/information-system-bridge-networks-condition/62025

