
936 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Knowledge Support for Software projects
Birinder Sandhawalia, National Centre for Project Management, Middlesex University, Trent Park, Bramley Road, London N14 4YZ, UK; E-mail:

b.sandhawalia@mdx.ac.uk

Darren Dalcher, National Centre for Project Management, Middlesex University, Trent Park, Bramley Road, London N14 4YZ, UK; E-mail: d.dalcher@mdx.ac.uk

ABSTrAcT
The unpredictable nature of software projects and the need for effective com-
munication within project teams requires a framework for social interaction and
feedback that results in better decision-making. This paper analyses the creation
and capture of knowledge within software development projects and discusses
the central role of decision making in the development process. The paper views
how the knowledge generated within a software project can be provided greater
visibility and communicated effectively, and to achieve this, presents a framework
to facilitate social interaction and feedback during the development process.

1. InTrODucTIOn
The use of knowledge is expected to result in better decision-making, innova-
tion and competitive advantage within software projects. Software development
projects are life-cycle driven and are organised around teams that are assembled
specifically for the limited duration of the project. The software development
process relies on the knowledge and creativity of individuals and teams, and the
formation of these teams requires the involvement and participation of all team
members in the development process. There is also an increasing need to involve
users early in the software development life-cycle since designing software
requires extracting detailed knowledge of the users. Effective communication is
the basis for discussion between users and developers during the requirements
definition process that is essential to provide an understanding of the software
requirements. However, problems of communication occur due to the diversity of
professional expertise and organisational roles that confer users’ different views
and expectations of the system to be developed.

The unpredictable nature of software projects and the need for effective com-
munication within project teams necessitates a framework for social interaction
and feedback that results in better decision-making. This paper analyses the
creation and capture of knowledge within software development projects. The
paper discusses the central role of decision making in the development process
and how the effective use of knowledge helps to improve decision-making dur-
ing the development process. The knowledge created and decisions implemented
need to be effectively communicated across the entire process. Social interac-
tion and feedback are key factors that facilitate the effective use of knowledge
within software projects. The paper views how the knowledge generated can be
provided greater visibility within the projects and communicated effectively, and
also presents a framework to facilitate social interaction and feedback during the
development process.

2. KnOWLeDGe
Knowledge is the capacity for effective action. Alavi and Leidner (1999) define
knowledge as ‘a justified personal belief that increases an individual’s capacity to
take effective action.’ While ‘personal’ implies the contextual nature of knowledge,
action requires competencies and know-how, and implies the dynamic nature
of knowledge. Knowledge is fluid and formally structured, and it exists within
people, processes, structures and routines, (Davenport and Prusak 1998). Polanyi
(1967) suggests that knowledge exists as tacit and explicit. Tacit knowledge
comprises an individual’s mental models, and while it is personal and in the mind
of an individual, it is also context specific and difficult to articulate, formalise
and verbalise, and is therefore hard to communicate and share. The factors that
influence an individual’s mental model include the individual’s education, exper-
tise, past experiences, perceptions, biases, prejudices and environment. Explicit
knowledge can be easily articulated and codified and therefore transmitted and

communicated. Polanyi (1967) contends that human beings acquire knowledge by
actively creating and organising their own experiences and sums it up by stating
that “we can know more than we can tell.”

The importance of knowledge is increasing as organisations recognise that they
posses knowledge and increasingly learn to view this knowledge as a valuable
and strategic asset. Knowledge assets include knowledge which resides within
the individuals, systems, processes, documents and structures of the organisation.
Davenport and Prusak (1998) recommend that to remain competitive, organisations
must efficiently and effectively create, capture, locate and share their organisations
knowledge and expertise, and have the ability to bring that knowledge to bear on
problems and opportunities.

2.1 Knowledge Management
The American Productivity and Quality Center (1996) defines knowledge manage-
ment as “a conscious strategy of getting the right knowledge to the right people
at the right time and helping people share and put information into action in ways
that strive to improve organisational performance.” Knowledge management,
therefore, requires that it is imperative to identify what knowledge needs to be
managed, how, when, where, by whom, and for whom. Consequently, the key
elements of KM are collecting and organising the knowledge, making it avail-
able through knowledge infrastructure, and then using the knowledge to improve
decision making and gain competitive advantage. Alavi and Leidner (1999) refer
to knowledge management as a systematic and organisationally specified process
for acquiring, organising and communicating both tacit and explicit knowledge
of employees so that other employees may make use of it to be more effective
and productive in their work and decision-making while improving product and
process innovation.

3. The neeD TO MAnAGe SOfTWAre prOjecT
KnOWLeDGe
Compared to organisations which are permanent structures and have routines,
projects are temporary by nature and their implementation requires creative actions,
practitioner’s experience, and the ability to apply knowledge to development prob-
lems. Projects are designed to achieve specific objectives within a predetermined
time frame, budget and resources. Projects involve planning for non-routine tasks
to be conducted in several phases, and can be characterised as unique, goal-ori-
ented and complex undertakings steeped in uncertainty, which aim to produce a
meaningful product or service in order to satisfy a need, (Dalcher 2003).

Software projects are life cycle driven and follow the sequence of going from
concept through definition and development, to testing and delivery. However,
unlike other projects, the requirements of software projects are subject to frequent
change. As a product, software can be changed, and it is therefore assumed that
this change is possible at even the later stages of the development process. Such
change and uncertainty make software projects more unpredictable than other
projects, and are therefore organised around teams, relying upon the knowledge
and creativity of the individuals and the teams. Software projects are typically
implemented by teams assembled specifically for the project and often disbanded
upon its completion. Requirements evolve and team members often change during
the course of projects, while feedback from one phase of the project to another rarely
provides team members with an opportunity to learn from their good decisions
or mistakes. Team members often come together for the first time at the outset of
the project and therefore it is difficult to create the right knowledge culture and
locate the knowledge assets. Moreover, project implementation effort is often

Managing Worldwide Operations & Communications with Information Technology 937

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

focused on immediate deliverables with no emphasis on how the experience and
insights gained would help and benefit future projects.

The amount of knowledge required to manage a project depends upon the novelty
and uniqueness of the required outcome. Love et al (1999) argue that even though
a project is unique, the processes involved in delivering the final outcome are
similar in projects and, therefore, most projects do not need to start from scratch
as they can utilise existing processes and learn from the experiences acquired
from previous projects. Projects are required to be completed within a specific
schedule and budget, which makes the reuse and harnessing of knowledge de-
sirable. Without the reuse of existing knowledge or the ability to create new
knowledge from existing solutions and experiences, project organisations have
to create new solutions to every problem they encounter, potentially leading to
delays and inefficiencies. With the reuse of knowledge, projects can be planned
more efficiently to be delivered within budget and on time. Koskinen (2004)
suggests a metaphor of a project tree to visualise the entire knowledge required
by a projects, and states that the types of knowledge that a project may require
are tacit, explicit, additive or substitutive. Koskinen (2004) further refers to ad-
ditive and substitutive knowledge as knowledge that is new to the project and
is either invented internally or acquired from external sources. This is similar
to Bredillet’s (2004) view that project teams need to know what knowledge is
available to complete the project based on past experience, and what knowledge
needs to be acquired or will emerge as a result of the unique nature of the project
tasks, especially within software projects.

The implementation and outcome of projects depends upon a large extent on the
knowledge of individuals, their access to local and global knowledge resources,
and recognition and integration of existing knowledge. Problem solving within
unique project instances generates further knowledge, and the knowledge assets
thus created, combined with the experience gained by implementing the project,
can benefit subsequent projects. Certain software process improvement approaches,
for example the Capability Maturity Model, suggest that the development process
be optimised to deliver the most of the software organisation’s capability. Such
approaches often suggest that knowledge be managed or leveraged, but do not
bring it down to an operational level. However, the knowledge requirements
make it imperative to identify what knowledge needs to be managed, how,
when, where, by whom, and for whom. Consequently, the key requirements for
managing knowledge within software projects are collecting and organising the
knowledge, making it available through knowledge infrastructure, and then using
the knowledge to improve the execution of projects.

The knowledge that is created requires a strategy or model that facilitates the
cross leveling of this knowledge across the software development process, and
globalises the knowledge created within the software project. Process models for
software development depict sequential, incremental, prototyping or evolutionary
approaches. Developmental models help simplify and reduce the complexity within
software projects by providing a perspective to organise the different stages or
phases of the development process. The following section presents and discusses
the Dynamic Feedback Model, which underlines the relationships and interactions
between the various entities and phases of the software development process.

4. The DynAMIc feeDBAcK MODeL
Complex and uncertain software development situations require a model that can
account for the knowledge needed to plan and implement decisions within the
development process. An example of such a model is the Dynamic Feedback
Model (DFM) that underlines the relationships and interactions between the
entities by depicting the feedback loops operating between them. The model,
as depicted in Figure 1, focuses on four different functional areas that are inter-
twined throughout software development. The DFM models the relationships in
a non-linear fashion amongst the functional areas and allows a continuous view
of the development process. The four areas are management, technical, quality
and decision-making.

4.1 functional Areas
The management area involves the planning, control and management of the
software development process. It also pertains to the strategy and operation of
the project. Key concerns revolve around identifying performance gaps, assessing
progress, and allocating resources to accomplish tasks. As technical development
and knowledge creation are on going activities, the management area also takes
on a continuous view. It does not limit its focus to delivering a product, but to the
continuous need for generating and maintaining an on-going flow of knowledge
required for continuous development.

The technical area deals with the creation and continuous improvement of the
software system. The area recognises the changing needs and perceptions of the
development process. The activity in this area includes evolution and maintenance
of the software, while also maintaining its functionality and utility. Experimenta-
tion, learning and discovery take place as the software goes from inception to
evolution. The development and design of the software form the basis for interac-

Project Management

Decision Making

Software Development Quality

Experience Reflection

Learning Application

Knowledge
Creation

Transfer

Figure 1

938 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

tion between team members, and the knowledge created through the interaction
provides the raw material for decision making within the process.

The quality area is perceived as a dynamic dimension, which continuously responds
to perceived mismatches and opportunities reflected in the environment. It is con-
cerned with assuring the quality of the product developed and the process used to
develop it. Being an area of assessment, it provides the basis for learning.

The decision-making area lies at the core of the model as software development is
described as a decision making process (Dym and Little 2000). This area attempts
to balance knowledge, uncertainty and ambiguity with a view to maximise the
expected returns on an on-going basis. Knowledge acquired from implementing
decisions is used within the process either as background knowledge available to
support future decisions, or as a formalised part of an integral body of knowledge
which can be used to optimise the decision making process. Decision-making
helps manage opportunity and risk and therefore this area can also be considered
the risk management area. Risk assessment and planning are key activities within
this area, which also ensures the implementation of decisions and the monitoring
of their execution on a continuous basis. The knowledge required for the imple-
mentation, execution and monitoring of decisions is provided by the interaction
and feedback loops of the model.

4.2 feedback Loops
The DFM is in essence a set of interactions and feedback loops governing and
controlling the development of software form a continuous perspective. The deci-
sion making perspective of the DFM ensures that rational and reasoned choices
are made from the alternatives available during the development process.

The basic loop in the dynamic system is the knowledge transfer-application-
experience loop. This loop helps to plan and control the production, evolution
and growth of the software in association with project management and decision
making. The loop enables the continuous generation of new information as well as
feedback knowledge and experience gained while executing the project. The use
of this knowledge is crucial in changing plans to adapt to reality and opportunities,
modifying the decisions and re-examining the assumptions. The visibility of this
basic feedback loop provides a continuous process to ensure the system remains
relevant with regard to its objectives.

The knowledge creation loop links the knowledge created and learning with ef-
fective application. The knowledge generated during the design process within
the decision-making area is applied to help develop the software. The knowledge
created in the technical area helps in quality assurance, while the learning that
emerges from identifying and correcting mismatches is fed back to the decision
making area for use in subsequent development.

The reflection-transfer loop provides visibility to the project management area
regarding the opportunities and mismatches present in the quality area, and also
those provided by the implementation and execution of the decisions made.

The above mentioned loops depict relationships between the different functional
areas. The DFM can therefore be used as a framework for understanding the
dynamic nature of the interactions between entities in software development,
and the knowledge that flows between them. The model moves away from linear
thinking and offers a continuous perspective for understanding and implement-
ing relationships, and the role these relationships play in software development.
The model achieves this through the on-going feedback and interactions of the

Figure 2

Software Project Management

Resource
Management

Feasibility
Study

Monitoring

Risk Assessment & Planning

Conceptual Design

Reporting Visibility

Confirming

High Level
Requirements

Code & Unit
Test

Low
Level

Testing

Low Level

Low Level
Test

Scenarios

Planning

Execute

Analysis

Quality
Assurance

Validation,
Verification &
Certification

Configuration
Management

Testing &
Evaluation

Risk Controlling Risk Monitoring
Design

Managing Worldwide Operations & Communications with Information Technology 939

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

loops, which present the framework to provide the knowledge flow required for
software projects. The following section examines the feedback and interactions
between the different phases of software development projects.

4.3 The DfM process
The phases of the software development process can broadly be categorised as
problem definition, requirements analysis, design, implementation and maintenance.
The DFM views knowledge as a key asset in the development of software and
focuses on its feedback within the functional areas of development. In doing so,
the DFM encourages thinking about software development in terms of the dif-
ferent phases and their interactions. The feedbacks within the functional areas of
the DFM are depicted in Figure 2, and the use of knowledge for decision making
within the various activities of software projects.

The project management area facilitates project planning and execution, and is
also where the user requirements are elicited and the problem defined. Planning
involves resource management where the skills and competencies required to
execute the project are identified and teams are formed. Proper requirements
analysis and specification are critical for the success of the project, as most defects
found during testing originate in requirements. In order to understand the customer
requirements, the developers require insight into the domain of the business
system and the technical concepts of the system to be developed. Knowledge is
created while understanding the requirements by the interaction of the different
team members, and also between the users and the developers. This knowledge
provides the perspective for decisions made to implement the project. The project
management area is where discussion takes place between the users and developers
as software development requires that users are involved in the development of
the software. A clear understanding is needed between the users and developers
to build the software, and this understanding is established through dialogue and
communication. The formalisation of such an understanding usually results in
the form of proposals and contracts. The feasibility of the project and the cost
involved in executing the project are the basis for the proposals and contracts.
The project management area addresses the need to assess the feasibility of the
project and its cost analysis.

Based upon the decisions made and the outcome of planning within the project
management area, an analysis of the impact the project will have on the business
and technical environment is made along with the possible risks involved in
implementing the project. The analysis views the goals, scope and functionality
of the system being developed and how they fit or respond to the existing pro-
cesses with which they are required to interact. Risk assessment and planning
are conducted and feature the two traditional components of risk identification
and prioritisation. Identification tries to envision all situations that might have a
negative impact on the project, while prioritisation involves analysing the possible
effects and consequences of the risk in case it actually occurs. The project also
requires crucial decisions to be made in the design stage. High level design is the
phase of the life cycle that provides a logical view of the development of the user
requirements. Design involves a high level of abstraction of the solution, through
which requirements are translated into a ‘blueprint’ for constructing the software,
and provides the architecture of the application and its database design. Decision
making at this stage of the process helps transform the requirements into a set of
software functions and a physical database structure. Scenarios are developed to
test the acceptability of the design with relation to the requirements.

The technical activities of design, code generation and testing are performed in
the technical area. The area includes the detailed design phase where the high
level design is converted into modules and programs. A unit test plan is created
for the conditions for which each program is to be tested. The required programs
are coded or translated into the programming language, and the programs are
tested using the unit test plans. The technical area ensures that the integration
plan is implemented according to the environments identified for integration.
The area also ensures the maintenance, functionality and utility of the software
apart from its creation and evolution. The decisions made in this area relate to
the technical activities and provide confirmation of the design and suitability of
the requirements. The decisions made are verified during system testing within
the quality assurance area.

Pressman (1997) states that quality assurance consists of the auditing and reporting
functions of management, and that its goal is to provide management with the data
necessary to be informed and assured about product quality. The quality assurance
area involves system testing which validates that the software developed meets

the requirement specification. This phase identifies the defects that are exposed
by testing the entire system. A series of tests are performed together, each with
a different purpose, to verify that the system has been properly integrated and
performs its functionality and satisfies the requirements. The quality assurance
area thus provides verification of the decisions made and tasks performed in the
technical area while confirming the decisions made during the design phase, and
validating the requirements.

The different phases of the process are validated and given visibility by the feed-
back loops. Controlling the execution of decisions generates knowledge (Dalcher
2003a). The feedback loops globalise this knowledge within the process and
ensure that knowledge is available for decision making. The decisions made in the
decision making area during design and risk analysis receive confirmation during
technical development and quality assurance. Technical development provides the
project management area visibility of the software being developed to meet the
requirements. Quality assurance further reports and validates to project manage-
ment the decisions made during design and technical development. The project
management area is able to assess the feedback and incorporate it in planning to
help address some of the change and uncertainty inherent within the software
development process.

5. cOncLuSIOnS
Software projects require knowledge to implement projects effectively. Software
projects are organised around teams and rely upon the knowledge, creativity and
competence of the individual team members. Effective knowledge management
helps provide timely and required knowledge to team members, which results in
better productivity and quality of the software processes and product. The DFM
adopts a long-term perspective of software development that enables it to address
the issues of uncertainty and ambiguity, and therefore benefit from the decisions
made and knowledge created during the development process. The long-term
perspective also enables the DFM to look beyond a single project and use the
knowledge generated towards improvements in future software projects. The DFM
is receptive to changes in the environment and tackles them by feeding acquired
knowledge back into the decision making process. As software development
becomes more integrated in management practices the importance of continu-
ous learning, knowledge, and skill acquisition as underpinned by the DFM will
remain central to improved control, visibility and management. The availability
of a long-term view justifies the adoption of multiple perspectives, the reuse of
knowledge and the utilisation of a decision making perspective, which underpin
feedback and improvement.

The DFM provides a framework that facilitates social interaction and feedback,
which further enhance the use of knowledge within the software development
process. The feedback loops help facilitate the flow of knowledge created and
insights gained within the processes and developmental activities of the functional
areas. The continuous view of software development provided by the DFM enables
the knowledge, both tacit and explicit, to be globalised through-out the software
project organisation. In the domain of software development, the DFM provides
software project organisations with an approach that focuses on the non-techni-
cal aspects, and the knowledge required to support the developmental effort. The
DFM helps identify how and where knowledge is created, shared, transferred,
applied and assimilated within the software project organisation. In doing so,
the DFM provides a framework and culture that views knowledge as a valuable
resource, and supports the effective implementation of software projects. Future
work includes validating knowledge support provided by the DFM for software
development projects.

6. referenceS
[1] Alavi M and Leidner DE (1999) ‘Knowledge Management Systems: Issues,

Challenges and Benefits,’ Communications of the Association for Information
Systems, Vol 1, Article 7.

[2] American Productivity and Quality Center (APQC) (1996), Knowledge
Management: Consortium Benchmarking Study Final Report; Available from
http://www.store.apqc.org/reports/Summary/know-mng.pdf

[3] Bredillet CN (2004) ‘Projects are Producing the Knowledge which are Produc-
ing the Projects……’ Proceedings of IPMA, Budapest.

[4] Dalcher D (2003) Computing Project Management, Middlesex University
Press, London.

940 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[5] Dalcher D (2003a) ‘Software Development for Dynamic Systems.’ Develop-
ments in Metainformatics. LNCS, Springer Verlag, Peter J Nurnberg (ed):
pp 58-75.

[6] Davenport TH and Prusak L (1998) ‘Working Knowledge,’ Harvard Business
School Press, Boston.

[7] Dym C L and Little P (2000) ‘Engineering Design: A Project Based Introduc-
tion.’ John Wiley, New York.

[8] Koskinen KU (2004) ‘Knowledge Management to Improve Project Com-
munication and Implementation,’ Project Management Journal, Vol 35, No
1, pp 13-19.

[9] Love, P.E.D, Smith, J and Li, H, (1999) ‘The Propagation of Rework Benchmark
Metrics for Construction,’ International Journal of Quality and Reliability
Management, Vol 16, No 7, pp 638-658.

[10] Polanyi M (1967) ‘The Tacit Dimension,’ Routledge and Keon Paul, Lon-
don.

[11] Pressman RS (1997) ‘Software Engineering – A Practitioner’s Approach,’
The McGraw-Hill Companies, Inc.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/knowledge-support-software-projects/33218

Related Content

Representations, Institutions, and IS Design: Towards a Meth-Odos
Gianluigi Viscusi (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study of

Information Systems (pp. 131-141).

www.irma-international.org/chapter/representations-institutions-design/64681

Fuzzy Decision Support System for Coronary Artery Disease Diagnosis Based on Rough Set

Theory
Noor Akhmad Setiawan (2014). International Journal of Rough Sets and Data Analysis (pp. 65-80).

www.irma-international.org/article/fuzzy-decision-support-system-for-coronary-artery-disease-diagnosis-based-on-rough-set-

theory/111313

Strategies to Implement Edge Computing in a P2P Pervasive Grid
Luiz Angelo Steffenel, Manuele Kirsch Pinheiro, Lucas Vaz Peresand Damaris Kirsch Pinheiro (2018).

International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/strategies-to-implement-edge-computing-in-a-p2p-pervasive-grid/193590

Reasoning on vague ontologies using rough set theory
 (). International Journal of Rough Sets and Data Analysis (pp. 0-0).

www.irma-international.org/article//288522

Research on Singular Value Decomposition Recommendation Algorithm Based on Data Filling
Yarong Liu, Feiyang Huang, Xiaolan Xieand Haibin Huang (2023). International Journal of Information

Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-

filling/320222

http://www.igi-global.com/proceeding-paper/knowledge-support-software-projects/33218
http://www.igi-global.com/proceeding-paper/knowledge-support-software-projects/33218
http://www.irma-international.org/chapter/representations-institutions-design/64681
http://www.irma-international.org/article/fuzzy-decision-support-system-for-coronary-artery-disease-diagnosis-based-on-rough-set-theory/111313
http://www.irma-international.org/article/fuzzy-decision-support-system-for-coronary-artery-disease-diagnosis-based-on-rough-set-theory/111313
http://www.irma-international.org/article/strategies-to-implement-edge-computing-in-a-p2p-pervasive-grid/193590
http://www.irma-international.org/article//288522
http://www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-filling/320222
http://www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-filling/320222

