
Managing Worldwide Operations & Communications with Information Technology 1469

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A Comprehensive Ontology-Driven
Software Development Architecture:

An Approach to Developing Romantic
Software Products

Nehemiah Mavetera, North West University, South Africa; E-mail: maveteran@uniwest.ac.za

ABSTRACT
Information systems have been criticized for their lack of flexibility and content
richness. The problem has been traced back to the developmental stages of these
systems. Current ISD approaches are mechanistic, that is, they lack a way of
capturing the humanistic element that is inherent in a socio-technical environ-
ment such as information systems. To address this anomaly, ontologies can be
introduced at the developmental stages to capture the romanticism inherent in these
systems, to mediate during the design and development of the software products
for these systems and to facilitate easy sharing of information among different
information systems. This paper discusses an architecture that positions ontolo-
gies at the center of a software development case tool. The ontology drives and
coordinates, the requirements analysis, design, and coding of software products
that are domain specific. Case based reasoning tools, Bayesian Networks, WordNet,
domain specific ontology, conceptual graphs and formal logic are the tools that
are incorporated into this software development architecture.

Keywords: Ontology, software development, Architecture, Romantic software
products.

1. INTRODUCTION
“There is a reason why computers have not yet become fervent natural language
speakers. (It’s not a matter of processing power and never will be): we simply
are not programming them correctly.”(El Baze, 2005)

Current Information systems exhibit a mechanistic character that has curtailed
their	usability.	These	systems	are	very	efficient	at	structuring	data	to	enable	and	
facilitate its interpretation. Mechanistic systems are based on the concept of explicit
programming (Agentis International, n.d). Explicit programming produces software
products that do not capture semantic and context rich data, a characteristic that
is needed in all modern day systems.

The American National Standards Institute (ANSI) proposed a conceptual
schema for knowledge encoding in the 1970s (Sowa, 2000). While the schema
can	coordinate	efficiently	between	the	applications,	user	interface	and	database	
of a system, it relied on syntactic coding, and is not evolvable. Other software
development paradigms such as the structured approach (Pressman, 2005), object
oriented approach (Pressman, 2005, Dennis et al, 2002); software product lines
approach (Carnegie Mellon Software Institute, n.d.) software kernels approach
(Information Technology University, Denmark, n.d) have been introduced to try
and improve the adaptability, evolvability, reusability of software products as
well as increase the semantic richness of the resultant information systems. As
their eighth basic principle of system development methodologies, Whitten et al
(2004), tell systems developers to design their system for growth and change.
Pressman(2004), in discussing the nine software myth, raises issues such as
evolvability, quality measurement, throughput levels, reusability of software
products, management of scope creep during development, and software products
documentation as some of the most misunderstood aspects that need to handled
carefully during a software development process.

This paper discusses how the ontological approach can incorporate the aspects
into information system development. The rest of the paper is as follows. Sec-
tion two discusses the software development problem, section three looks at the
transition from mechanistic to romantic software products, section four	briefly	
discusses	 the	 role	of	ontology	 in	 information	systems	and	finally	section five
discusses an ontology driven software development architecture. The conclu-
sion closes the discussion but also summarizes the way forward in the ontology
research process in ISD.

2. ThE SOFTWARE DEVElOPMENT PROBlEM
The problem in the resultant software products and whose characteristics sub-
sequently	 emerge	 in	 the	final	 information	 system	have	been	 tracked	down	 to	
the developmental stages of the software product. The software development
process is a part of a system development process that includes a set of activi-
ties, methods, best practices, deliverables and automated tools that developers
use to develop and maintain information systems. Basden (2001), in his article
“Christianity Philosophy and Information Systems” decried the continual lack of
return of investment from information systems investments. He noted that there
is something deeply wrong in the way the “artifact” is developed. This artifact is
the software product. He further searches for the problem and the solution. “What
is wrong? “and “what do we do about it?” His solution set coupled with other
researchers suggestions are herein included as a way to improving the usability
of the software product.

2.1 Software Development Issues
Issues considered during the software development process play a vital role in
shaping and determining the qualities of the software product. Basden (2001)
noted four areas of concern that can be addressed to improve the quality of the
product. The areas look at fashioning of technical artefacts for use, development
of technology from which we fashion an artefact, the use of the artefact and us-
ers’ and developers’ overall perspective on the use of technology (herein we add
the social context of information systems and their situated ness). In addition,
other issues require:

• Developers to focus on designing reusable components
• Developers to focus more on the innovative elements of a software product

design
• That the innovative elements of a software product represent the domain

related additions that make the difference between domain packages.

Managing these issues leads to a gradual change from mechanistic to romantic
systems.

3. DEVElOPINg ROMANTIC SOFTWARE PRODUCTS
To bridge between the mechanistic development methods and the required romantic
methods, we are going to use the ontology artifact. Romantic systems possess
a certain degree of humanistic behavior. They are open, non-deterministic and

1470 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

do not subscribe to mechanistic ideas of representation, formalization, program,
order, reason, stability and control like machines. These systems borrow their
definition	from	romanticism	(Basden,	2001;	John,	n.d.;	Gregor,	n.d;	Loflin,	n.d)	
which imitates belief systems that depend on “irrationalism and feelings”.

Ontology	has	enjoyed	many	definitions	in	the	literature.		The	section	below	gives	
a	brief	of	the	common	accepted	meanings	to	ontology.	This	is	the	definition	widely	
used in information systems development.

3.1 Ontology of a System
Ontology can be viewed as an engineering artifact. In this part, ontology consists
of	a	specific	vocabulary	used	to	describe	a	certain	reality	(Guarino,	1998).	The	
vocabulary used is accompanied by a set of explicit assumptions, which give
people the intended meaning of such a vocabulary.

Studer	 et	 al	 (1998)	 add	 that	 ontology	 is	 an	 explicit	 formal	 specification	 of	 a	
shared conceptualization. Formalization looks at machine readability (syntac-
tics)	of	the	ontology.	Explicit	specification	incorporates	the	clear	identification	
of concepts, properties, relations, functions, constraints and axioms (semantics)
within a universe of discourse. If a thing is clear to a subject, that thing should
make sense to the said subject(Mavatera, 2004b). The addition of the phrase
‘shared conceptualization’ denotes ontologies as abstract models of phenomena
in the world with implicit knowledge in them. Furthermore, there is some sense
of mutual understanding of the concept among people in the same contextual
environment (pragmatics).

Neches et al	(1991)	defined	ontology	as	‘the	basic	terms	and	relations	comprising	
the vocabulary of a topic area, as well as the rules for combining terms and relations
to	define	extensions	to	the	vocabulary’.	Swartout	et al (1997) describe ontologies
as a hierarchically structured set of terms for describing a domain. Gruber (1993)
defines	ontology	as	‘a	specification	of	a	representational	vocabulary	for	a	shared	
domain	of	discourse…’	He	goes	on	to	say	that	ontology	is	an	‘explicit	specifica-
tion of a conceptualization’. In a more literal way, Ontology consists of a set of
concepts and their relationships, forming a conceptual structure that underlies the
interpretation of any system model. In short, ontology of a system can be taken as
a set of representational terms in the universe of discourse. The ontology is used
for ‘sharing and reuse of formally represented knowledge’.

4. ONTOlOgy IN INFORMATION SySTEMS
The purpose of using ontology is to develop software products that capture semantics
and social context of information systems through the development of databases
of domain ontologies and application packages that capture semantics, context
and the situated ness of organizational information systems. It is:

’…about awareness, connection and meaning, impact versus activity and knowl-
edge versus data’. in-PharmaTechnologist.com (2005)

The ontology replaces the conceptual schema at the center of an integrated in-
formation system as previously stipulated by ANSI (see section 1 above). In this
research, we take advantage of ontology characteristics such as easy to use, differ-
ent formal expressiveness with reasoning support, integrated form generation to
acquire instances, ability to build test cases and use the cases to check consistency,
ability to be manipulated and reason at run time, ability to drive control logic of a
program, ability to be tuned so as to automate the software testing process as well
as ability to allow user involvement at any stage of the development to position it
at the center of the development of romantic software products.

In short putting ontology at the center of the software development tool allows the
resultant software products to be adaptable, evolvable and be context aware.

5. ONTOlOgy DRIVEN SOFTWARE DEVElOPMENT
ARChITECTURE
 Figure 1 below shows the architecture of the software development tool that we
refer as the OntoSoft case tool. The OntoSoft tool has three major components,
the knowledge base repository, the designer engine and the reasoner.

5.1 The Knowledge Base Repository
Unlike the Rebuilder case tool discussed in Gomez,(2004), the OntoSoft knowledge
base repository consist of three parts, the WordNet ontology base, the domain
specific	ontology	base(not	found	in	Rebuilder	or	any	other	case	tool	developed	
so far) and a code and case base set.

The WordNet ontology base is taken and maintained “as is” . WordNet is a type
of terminological ontology(Sowa, n.d). It is a lexicon and consists of information
about “ syntax, spelling, pronunciation and usage of words” In short, it is a natural
language knowledge base. It is not updated so as to maintain linguistic consistency
in terms of international grammar and general meanings to terms.

	The	domain	specific	ontology	set	is	specific	to	an	application	software	domain	and	
is allowed to change according to the different conceptualizations and ontological
commitments(Guarino, 1998) to a certain domain. This is the knowledge base
that	users’	and	developers	can	fine	tune	to	suit	their	application	domains.	Finally,	
the case and code designs base store new and old designs that are relevant to a
specific	application	domain.	

WordNet
Ontology
Base Set

Domain
Specific
Ontology Set

Code &
Case Designs

Knowledge base Repository

Graph Editor

Ontology Editor

Case Generator

Designer Engine

Code Generator

Inference Engine

Reasoner

Figure 1. Ontology software development case tool architecture

Managing Worldwide Operations & Communications with Information Technology 1471

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

5.2 The Designer Engine
It consists of an ontology editor, case generator and graph editor. The three are
used	to	develop	domain	specific	ontology	on	the	run,	cases	that	capture	the	dif-
fering designs in the application domain and graphs that are used to map related
concepts in a domain through their respective conceptual relations.

The designer engine uses the same principles as Rebuilder in terms of case in-
dexing with the only difference being the graph editor. Rebuilder uses UML as
case editor. UML as a case editor does not link the cases to the meaning of the
cases which are stored in the domain ontology. It is purely syntactic. OntoSoft
uses conceptual graphs that are a graphic notation for logic based on existential
graphs. The conceptual graphs are augmented with features from linguistics and
the	semantic	networks	of	artificial	intelligence.	Conceptual	graphs	can	be	used	
to map to and from natural languages. As a presentation language, they are used
for displaying logic in a more human readable form. The conceptual graphs will
be	linked	to	the	domain	specific	ontology	to	beef	the	knowledge	content	of	the	
cases and designs.

5.3 The Reasoner
The reasoner consists of the inference engine and a code generator. The inference
engine is like the communication engine between the designer engine and the
knowledge base repository. It accepts user queries, retrieves old cases, and links
new	cases	to	WordNet	and	domain	specific	ontologies,	links	code	to	the	cases	and	
conceptual graphs. In fact, it is the brains behind the OntoSoft case tool.

The	code	generator	automatically	develops	code	specific	to	a	retrieved	or	adapted	
case. The reasoner uses Bayesian Networks (BN) techniques to index cases and
case based reasoning (CBR) principles which are well covered in Gomez(2004).
CBR is based on the reuse of experience. It captures every reasoning instance as
an	episode	that	is	registered	and	stored	in	a	case.	As	each	case	captures	a	specific	
situation and is context related, then the syntactic, semantic and pragmatic aspect
of the situation is also captured(Mavetera, 200b). The reader is directed to this
article for further explanation on case based reasoning.

6. CONClUSIONS
This paper discussed problems that currently bedevil our information systems to
a proposed development architecture that can solve most of these problems. Of
importance is the focus of the paper on the “artifact” during software products
development. Unless the artifact is made adaptive, evolvable during the design
stage, software developers must not expect the resultant information system to be
adaptive and evolvable. The paper positions ontology at the center of romantic
software products development process. These products will be reusable, process
able, and in addition, they can be adapted and evolved to come up with entirely
new software products. The software myths (Pressman, 2005), Software Product
Lines(Carnegie Mellon Software Institute, n.d), software kernels (Dittrich &
Sestoft, 2005) are all issues that can be solved by positioning ontology at the
center of the software development process.

The next stage of the research is to engage industry partners, initially to investi-
gate the software development practices that are in existence, the approaches, the
methods, techniques, and the tools they use to come up with a product that give
information	systems	their	social	situated	ness.	These	findings	are	a	very	good	tool	
which can be used to validate and motivate the industry use of the OntoSoft case
tool framework. The OntoSoft case tool will also be tested using a prototype.

7. REFERENCES
AGENTIS. n.d. Simplifying the complexity of Application Development. Developing

and deploying J2EE solutions with Agentis Adaptive Enterprise TM Solution
Suite, Agentis International, Inc.

BASDEN, A. 2001. Christian Philosophy and Information Systems. Presented to
institute for Christian studies, Toronto. [Online]. Available: http://www.isi.
salford.ac.uk/dooy/papers/cpis.html. [Cited on 31 August 2006].

CARNEGIE MELON SOFTWARE ENGINEERING INSTITUTE, nd. Software
Product Lines. [Online]. Available: http://www.sei.cmu.edu/productlines/ ,
[Cited 14 August 2006].

DITTRICH, Y & SESTOFT, P. 2005. Designing Evolvable Software products:
Coordinating the evolution of different layers in kernel Based Software
Products. [Online]. Available: http://www.itu.dk/research/sdg/doku.php .
Cited October 2006].

EL BAZE, N. 2005. Cracking Software Development Complexity: In order to
reap	the	benefits	of	progress	in	processor	technology,	we	must	fundamentally	
rethink how to write software, Line 56-The Business Executive daily. [Online],
Available: http://www.line56.com/articles/, [Cited 30 March 2005].

GOMEZ, P., 2004. Software Design Retrival using Bayesian networks and
WordNet

GREGOR, S. n.d. The Struggle torwards an understanding of theory in information
systems.School of Business and Information Management, The Australian
National University. [Online]. Available:http://epress.anu.edu.au/info_sys-
tems/ part-ch01.pdf. [Cited 31 August 2006].

GRUBER,	T.	A.1993.	Transition	Approachto	portable	ontology	specifications.	
Knowledge Acquisition. Vol.5.1993. p.199-220.

GUARINO, N., 1998. Formal Ontology and Information Systems. In Proceedings
of FOIS’98, Trento, Italy, 6-8 June, 1998. Amsterdam, IOS Press, p.3-15.

IN-PHARMA TECHNOLOGIST.COM, 2005, Improved data dealing drives drug
discovery. [Online], Available: http://www.in-pharmatechnologist.com/news/,
[Cited, 30 March, 2005].

JOHN, R.R. 2003. When Information Come of Age: Technologies of Knowledge
in the Age of Reason and Revolution, 1700-1850. In William and Mary
Quarterly, Vol. LX, No. 2, Reviews of Books.

LOFLIN, L. n.d. Romanticism Notes, [Online]. Available:http://www.sullivan-
county.com/nf0/nov_2000/romanticism.htm. [Cited on 4 September 2006].

MAVETERA, N. 2004a. The Use of Ontologies in Designing Agents for E-
Markets: From a Mechanist to a Romantic Approach: In Proceedings of the
International Business Information Management Conference (IBIM ‘04),
July, 2004, Amman, ISBN: 0-9753393-1-1

MAVETERA, N. 2004b. The Philosophy of Ontologies: A new Information Sys-
tems Development Paradigm. In proceedings of the International Science
and Technology Conference (ISTC’04), Vanderbailpark, SA

NECHES, R.; FIKES, R; FININ, T; GRUBER, T; PATIL, R; SENATOR, T;
SWARTOUT, W.R.1991. Enabling Technology for Knowledge sharing. AI
Magazine. Winter 1991. p.36-56.

PRESSMAN,R.S 2005, Software Engineering : A Practictitioner’s Approach, 6th
Ed, MacGraw–Hill, International Edition.

SOWA, F. J. 2000. Ontology, Metadata and Semiotics. Conceptual structures:
Logical, Linguistic and computational issues., Springer-Verlag, Berlin, 2000,
p 55-81, Ganter & Mineau, Eds. (Lecture notes in AI #1867)

STUDER, R., BENJAMINS, R. & FENSEL, D. 1998. Knowledge Engineer-
ing: Principles and Methods. Data and Knowledge Engineering. Vol.25.
p.161-197

SWARTOUT, B., PATIL, R., KNIGHT, K. & RUSS, T. 1997. Toward Distributed
Use of Large Scale Ontologies. Ontological Engineering. AAAI-97, Spring
Symposium Series. 1997. p138-148.

TURBAN, E., MCLEAN, E. & WETHERBE, J. 2004. Information Technology
for Management: Transforming organisation in the Digital Economy, 4th ed.
John Wiley & Sons, Inc.

WHITTEN, J.L & BENTLEY, L.D. 2004. Systems Analysis and Design methods.
Irwin/McGraw- Hill

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/comprehensive-ontology-driven-software-

development/33400

Related Content

Cryptanalysis and Improvement of a Digital Watermarking Scheme Using Chaotic Map
Musheer Ahmadand Hamed D. AlSharari (2018). International Journal of Rough Sets and Data Analysis (pp.

61-73).

www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-

map/214969

Digital Divide in Scholarly Communication
Thomas Scheiding (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2051-

2059).

www.irma-international.org/chapter/digital-divide-in-scholarly-communication/112612

An Empirical Evaluation of a Vocal User Interface for Programming by Voice
Amber Wagnerand Jeff Gray (2015). International Journal of Information Technologies and Systems Approach

(pp. 47-63).

www.irma-international.org/article/an-empirical-evaluation-of-a-vocal-user-interface-for-programming-by-voice/128827

Machine Learning-Assisted Diagnosis Model for Chronic Obstructive Pulmonary Disease
Yongfu Yu, Nannan Du, Zhongteng Zhang, Weihong Huangand Min Li (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-22).

www.irma-international.org/article/machine-learning-assisted-diagnosis-model-for-chronic-obstructive-pulmonary-

disease/324760

Performance Measurement of a Rule-Based Ontology Framework (ROF) for Auto-Generation of

Requirements Specification
Amarilis Putri Yanuarifiani, Fang-Fang Chuaand Gaik-Yee Chan (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-21).

www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-

requirements-specification/289997

http://www.igi-global.com/proceeding-paper/comprehensive-ontology-driven-software-development/33400
http://www.igi-global.com/proceeding-paper/comprehensive-ontology-driven-software-development/33400
http://www.igi-global.com/proceeding-paper/comprehensive-ontology-driven-software-development/33400
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/chapter/digital-divide-in-scholarly-communication/112612
http://www.irma-international.org/article/an-empirical-evaluation-of-a-vocal-user-interface-for-programming-by-voice/128827
http://www.irma-international.org/article/machine-learning-assisted-diagnosis-model-for-chronic-obstructive-pulmonary-disease/324760
http://www.irma-international.org/article/machine-learning-assisted-diagnosis-model-for-chronic-obstructive-pulmonary-disease/324760
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997

