Chapter 1 Bio-Inspired Algorithms Leveraging Blockchain Technology Enhancing Efficiency Security and Transparency

P. Chitra

Dhanalakshmi Srinivasan University, India

A. Saleem Raja

University of Technology and Applied Sciences, Shinas, Oman

V. Sivakumar

Asia Pacific University of Technology and Innovation, Malaysia

ABSTRACT

Bio-inspired algorithms, which imitate the actions and procedures seen in biological systems, have proven to be incredibly effective at solving problems in a variety of fields. However, the combination of these algorithms with blockchain technology holds enormous promise for improving their potency while assuring effectiveness, efficiency, and security. This chapter gives a general overview of how bio-inspired algorithms are used effectively with blockchain technology, highlighting their main benefits and prospective uses. Bio-inspired algorithms can gain from improved security and confidence in their execution by utilizing the decentralized and immutable characteristics of blockchain. Blockchain technology offers a transparent and auditable platform that makes it easier to verify algorithmic operations and ensure the accuracy of data. Furthermore, distributed resource allocation and decision-making are made possible by blockchain's decentralized consensus mechanisms, promoting cooperation and collective intelligence.

DOI: 10.4018/979-8-3693-1131-8.ch001

INTRODUCTION

Bio-inspired algorithms, which draw inspiration from natural systems, have proven to be powerful tools for solving complex optimization and decision-making problems. These algorithms mimic the behavior of biological entities such as ants, bees, genetic evolution, and neural networks to find innovative and efficient solutions. Concurrently, blockchain technology has emerged as a revolutionary concept that enables decentralized, transparent, and secure transactions.

The integration of bio-inspired algorithms with blockchain technology holds significant promise in various fields, offering enhanced efficiency, security, and transparency. By leveraging the inherent strengths of both bio-inspired algorithms and blockchain, researchers and practitioners can tackle complex challenges in a decentralized and trustless environment.

Bio-inspired algorithms encompass a range of techniques, including genetic algorithms, swarm intelligence, artificial neural networks, and evolutionary computation. These algorithms have demonstrated impressive problem-solving capabilities across domains such as optimization, scheduling, resource allocation, and pattern recognition. However, they often rely on centralized computational resources and lack transparency in their execution. (H. Zhou, 2020) Block chain technology, on the other hand, offers a decentralized and immutable ledger that ensures transparency, security, and consensus. Blockchain has gained widespread attention primarily through its association with cryptocurrencies like Bitcoin. However, its potential extends far beyond financial applications, with implications for various industries, including supply chain management, healthcare, energy, and identity management.

The integration of bio-inspired algorithms with blockchain technology provides several advantages. Firstly, the decentralized nature of blockchain enables distributed computation, allowing multiple participants to contribute their computational resources to solve complex problems. This approach increases computational power, scalability, and resilience. Secondly, blockchain's transparency and immutability ensure that the execution of bio-inspired algorithms can be verified and audited, fostering trust and accountability. Additionally, blockchain's consensus mechanisms provide a decentralized decision-making framework, enabling efficient coordination among participants.

Bio Inspired Algorithms

Bio-inspired algorithms are computational methods that draw inspiration from the principles, behavior, and processes observed in biological systems. These algorithms mimic the adaptive and efficient strategies found in nature to solve complex problems.

22 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/bio-inspired-algorithms-leveraging-blockchain-technology-enhancing-efficiency-security-and-transparency/338082

Related Content

Image Representation, Filtering, and Natural Computing in a Multivalued Quantum System

Sanjay Chakrabortyand Lopamudra Dey (2016). *Handbook of Research on Natural Computing for Optimization Problems (pp. 689-717).*

www.irma-international.org/chapter/image-representation-filtering-and-natural-computing-in-a-multivalued-quantum-system/153836

Evolutionary Turing Machines: The Quest for Busy Beavers

Penousal Machado, Francisco B. Pereira, Jorge Tavares, Ernesto Costaand Amílcar Cardoso (2005). *Recent Developments in Biologically Inspired Computing (pp. 9-40).* www.irma-international.org/chapter/evolutionary-turing-machines/28322

A Machine Learning Approach to Tracking and Characterizing Planar or Near Planar Fluid Flow

Mahendra Gooroochurn, David Kerrand Kaddour Bouazza-Marouf (2020). *International Journal of Natural Computing Research (pp. 76-87).*https://www.irma-international.org/article/a-machine-learning-approach-to-tracking-and-characterizing-planar-or-near-planar-fluid-flow/258961

An Observer Approach for Deterministic Learning Using Patchy Neural Networks with Applications to Fuzzy Cognitive Networks

H. E. Psillakis, M. A. Christodoulou, T. Giotisand Y. Boutalis (2011). *International Journal of Artificial Life Research (pp. 1-16).*

www.irma-international.org/article/observer-approach-deterministic-learning-using/52974

Folding Theory for Fantastic Filters in BL-Algebras

Celestin Lele (2011). *International Journal of Artificial Life Research (pp. 32-42).* www.irma-international.org/article/folding-theory-fantastic-filters-algebras/62071