Chapter 12 Renewable Energy-Based Charging Solutions for Incorporation of Electric Rickshaws Into Electrical Grid Supply Network

Dharmbir Prasad

https://orcid.org/0000-0002-9010-9717

Asansol Engineering College, India

Rudra Pratap Singh

https://orcid.org/0000-0001-7352-855X

Asansol Engineering College, India

Sneha Mahata

Asansol Engineering College, India

Sourbh Kumar

Asansol Engineering College, India

Sudhangshu Chakraborty

Asansol Engineering College, India

ABSTRACT

For the past few years, urban areas have been grappling with increasing pollution and traffic congestion. The adoption of electric rickshaws presents a promising solution for sustainable and clean urban mobility. However, integrating these

DOI: 10.4018/979-8-3693-4314-2.ch012

Charging Solutions for Incorporation of Electric Rickshaws

e-rickshaws into the electrical grid successfully necessitates careful planning and the installation of renewable energy alternatives. Various challenges are faced by the conventional grid systems in accommodating the charging needs of growing fleet of e-rickshaws; and this problem is faced by most of the states in India. Cases of power theft for charging e-rickshaws have become quite common. And thus, to overcome this problem, charging stations can be made separately for e-rickshaws by using renewable energy sources. This chapter deals with the setting up of a plant using renewable energy in a place called 'Seoraberia,' Howrah, West Bengal, by using biogas and PV as the main source of renewable energy.

INTRODUCTION

List of Abbreviations

AAEA	All Assam Engineer's Association
ABB	Asea Brown Boveri
BEV	Batter Electric Vehicle
CAGR	Compound Annual Growth Rate
CHIL	Controller Hardware in the Loop
CSs	Charging Stations
CSCS	Charging Station Control Strategy
DNI	Direct Normal Irradiation
DSTATCOM	Distribution Static Compensator
EV	Electric Vehicle
EVCS	Electric Vehicle Charging Station
EVPL	Electric Vehicle Parking Lot
EVSE	Electric Vehicle Supply Equipment
FADA	Federation of Automobile Dealers Associations
FAME	Faster Adoption and Manufacturing of Hybrid & Electric Vehicles in India-II
FCEV	Fuel Cell Electric Vehicles
GHI	Global Horizontal Irradiance
GCPV	Grid Connected Photo-Voltaic
GWO	Grey Wolf Optimizer method
HRES	Hybrid Renewable Energy System
HV	Hybrid Vehicle

continued on following page

36 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/renewable-energy-based-chargingsolutions-for-incorporation-of-electric-rickshaws-intoelectrical-grid-supply-network/353329

Related Content

Ferroresonance in Power and Instrument Transformers

Afshin Rezaei-Zareand Reza Iravani (2013). *Electromagnetic Transients in Transformer and Rotating Machine Windings (pp. 184-237).*

www.irma-international.org/chapter/ferroresonance-power-instrument-transformers/68876

Detection of Transformer Faults Using Frequency Response Analysis with Case Studies

Nilanga Abeywickrama (2013). *Electromagnetic Transients in Transformer and Rotating Machine Windings (pp. 456-486).*

www.irma-international.org/chapter/detection-transformer-faults-using-frequency/68883

Problems of Modeling and Optimization of Heat Supply Systems: Methods to Comprehensively Solve the Problem of Heat Supply System Expansion and Reconstruction

Valery Stennikov, Tamara Oshchepkovaand Nikolay Stennikov (2016). Sustaining Power Resources through Energy Optimization and Engineering (pp. 26-53). www.irma-international.org/chapter/problems-of-modeling-and-optimization-of-heat-supply-systems/143777

Comparative Study of Transmission Line Junction vs. Asynchronously Coupled Junction Diplexers

Eugene A. Ogbodo (2021). Handbook of Research on 5G Networks and Advancements in Computing, Electronics, and Electrical Engineering (pp. 326-336). www.irma-international.org/chapter/comparative-study-of-transmission-line-junction-vs-asynchronously-coupled-junction-diplexers/279976

Renewable Energy Technologies

(2012). Power System Planning Technologies and Applications: Concepts, Solutions and Management (pp. 121-142).

www.irma-international.org/chapter/renewable-energy-technologies/63933