
170

Chapter VIII
ROL2:

Towards a Uniform Deductive
Object-Oriented Database Language

Mengchi Liu
Wuhan University, China

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Deductive object-oriented databases are intended to integrate the deductive and object-oriented database
techniques to combine the best of two approaches and to overcome their inherent shortcomings, with a
number of deductive object-oriented database languages proposed. However, most of these languages
are only structurally object-oriented. Important behaviorally object-oriented features such as methods
and encapsulation common in object-oriented database systems are not properly supported. This chapter
presents a novel deductive object-oriented database language called ROL2 that extends structurally
object-oriented database language ROL with all behaviorally object-oriented features. It supports in a
rule-based framework all important object-oriented features such as object identity, complex objects,
typing, information hiding, rule-based methods, encapsulation of such methods, overloading, late bind-
ing, polymorphism, class hierarchies, multiple structural and behavioral inheritance with overriding,
blocking, and conflict handling. It is so far the only deductive object-oriented database language that
supports all these features in a uniform rule-based framework.

INtrODUctION

Deductive databases and object-oriented databas-
es are two important extensions of the traditional
database technology. Deductive databases result

from the integration of relational database and
logic programming techniques. The main attrac-
tion of the relational database technique is that it
is built around simple and natural mathematical
structure — the relation that allows efficient sec-

 171

ROL2

ondary storage access, and set-oriented, high-level
query languages, with rigorous mathematical
foundations (Codd, 1970).

Logic programming is direct outgrowth of
earlier work in automatic theorem proving and
artificial intelligence. It uses logic to represent
knowledge and uses deduction to solve problems
by deriving logical consequences. The most
well-known and widely used logic programming
language is Prolog (Colmerauer, 1985; Kowalski,
1988; Sterling & Shapiro, 1986), which uses the
Horn clause subset of first-order logic as program-
ming language and the resolution principle as a
method of inference with well-defined model-
theoretic and proof-theoretic semantics (Lloyd,
1987).

Important studies on the relations between
logic programming and relational databases
have been conducted since 1970s, mostly from
theoretical point of view (Gallaire & Minker,
1978; Gallaire, 1981; Jacobs, 1982; Ullman, 1982;
Maier, 1983). Relational databases and logic pro-
gramming have been found quite similar in their
representation of data at the language level. They
have also been found complementary in many
aspects. Relational database systems are superior
to the standard implementations of Prolog with
respect to data independence, secondary storage
access, concurrency, recovery, security and in-
tegrity (Tsur Zaniolo, 1986). The control over the
execution of query languages is the responsibility
of the system, which uses query optimization and
compilation techniques to ensure efficient per-
formance over wide range of storage structures.
However, the expressive power and functional-
ity of relational database query languages are
limited compared to that of logic programming
languages. Relational languages do not have
built-in reasoning capabilities. Also, relational
query languages are often powerless to express
complete applications, and are thus embedded in
traditional programming languages, resulting in
impedance mismatch (Maier, 1987) between pro-
gramming and relational query languages. Prolog,

on the other hand, can be used as general-purpose
programming language. It can be used to express
facts, deductive information, recursion, queries,
updates, and integrity constraints in uniform way
(Reiter, 1984; Sterling &Shapiro, 1986).

Deductive databases combines the benefits of
both logic programming and relational databases,
such as representational and operational unifor-
mity, reasoning capabilities, more expressive
declarative query language, efficient secondary
storage access, etc. The function symbols of Pro-
log, which are typically used for building recursive
functions and complex data structures, have not
been found useful for operating over relational
databases made up of flat relations. As result,
restricted form of Prolog without function symbols
called Datalog (with negation), with well-defined
declarative semantics based on the work in logic
programming, has been widely accepted as the
standard deductive database language (Ceri et al.,
1990; Ullman, 1989).

Object-oriented databases extend the data
modeling power of the traditional databases by
means of number of novel data modeling mecha-
nisms such as object identity, complex objects,
classes, class hierarchy, and inheritance. They
integrate both structural and behavioral parts
into uniform framework and provide better way
to organize and manipulate structured objects.
Examples of object-oriented languages and
systems are Iris (Fishman et al., 1987), Exodus
(Carey et al., 1988), GemStone (Butterworth et
al., 1991), Orion (Kim, 1990), O2 (Deux et al.,
1991), ObjectStore (Lamb et al., 1991), ONTOS
(Soloviev, 1992), Jasmine (Ishikawa et al., 1993).
ODMG-93 (Cattell, 1996), and ODMG 2.0 (Cattell
& Barry, 1997).

However, both deductive databases and object-
oriented databases have shortcomings. Deductive
databases lack the powerful data modeling mecha-
nisms offered by object-oriented databases, while
object-oriented databases lack built-in reasoning
capabilities and expressive declarative query
language with firm logical foundation.

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/rol2-towards-real-deductive-object/35859

Related Content

A Reuse Definition, Assessment, and Analysis Framework for UML
Donald Needham, Rodrigo Caballero, Steven Demurjian, Felix Eickhoffand Yi Zhang (2005). Advances in

UML and XML-Based Software Evolution (pp. 286-307).

www.irma-international.org/chapter/reuse-definition-assessment-analysis-framework/4940

Rule Markup Languages and Semantic Web Rule Languages
Adrian Paschkeand Harold Boley (2009). Handbook of Research on Emerging Rule-Based Languages and

Technologies: Open Solutions and Approaches (pp. 1-24).

www.irma-international.org/chapter/rule-markup-languages-semantic-web/35852

An Interactive Viewpoint on the Role of UML
Dina Goldin, David Keiland Peter Wegner (2001). Unified Modeling Language: Systems Analysis, Design

and Development Issues (pp. 250-264).

www.irma-international.org/chapter/interactive-viewpoint-role-uml/30582

Formalizing and Analyzing UML Use Case Hierarchical Predicate Transition Nets
Xudong He (2005). Advances in UML and XML-Based Software Evolution (pp. 154-183).

www.irma-international.org/chapter/formalizing-analyzing-uml-use-case/4935

Rule-Based OWL Ontology Reasoning Systems: Implementations, Strengths, and Weaknesses
Georgios Meditskosand Nick Bassiliades (2009). Handbook of Research on Emerging Rule-Based

Languages and Technologies: Open Solutions and Approaches (pp. 124-148).

www.irma-international.org/chapter/rule-based-owl-ontology-reasoning/35857

http://www.igi-global.com/chapter/rol2-towards-real-deductive-object/35859
http://www.irma-international.org/chapter/reuse-definition-assessment-analysis-framework/4940
http://www.irma-international.org/chapter/rule-markup-languages-semantic-web/35852
http://www.irma-international.org/chapter/interactive-viewpoint-role-uml/30582
http://www.irma-international.org/chapter/formalizing-analyzing-uml-use-case/4935
http://www.irma-international.org/chapter/rule-based-owl-ontology-reasoning/35857

