
326

Chapter XIV
From Business Rules to

Application Code:
Code Generation Patterns for Rule

Defined Associations

Jens Dietrich
Massey University, New Zealand

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Rules that define relationships between objects are an important part of the specifications of software
systems. However, support for the explicit representation of those rules in modelling languages is still
immature and there is little support to assist software engineers in implementing them. The result of
this practice is hand-crafted and error-prone applications. In this chapter, we analyse some common
patterns used to implement rules and discuss the shortcomings associated with those patterns. We then
discuss several options to explicitly represent rules, and how to automate the generation of application
code from rules.

INtrODUctION

Object-oriented programming (OOP) has become
the dominant programming paradigm over the last
twenty years. OOP facilitates the modularisation
and reuse of software, and supports the “divide and
conquer” approach to master large and complex
software engineering projects. Several modelling
techniques have been proposed in order to sup-

port object-oriented software engineering, the
most successful ones being the Unified Modelling
Language (UML) (UML, 2004) and the Eclipse
Modeling Framework (EMF) (Budinsky, Brod-
sky, Merks, Ellersick & Grose, 2003). As far as
modelling is concerned, models such as UML
diagrams provide a useful level of abstraction
from the programming language used. While it
was very common in the early years of object-

 327

From Business Rules to Application Code

oriented programming and design to manually
translate these models into programming language
artefacts, code generation has become more and
more common. The Model Driven Architecture
(MDA) (http://www.omg.org/mda/) initiative
of the Object Management Group (OMG) aims
at embedding this practise into a conceptual
framework that is based on the idea of model
transformations.

In general, the gap between modelling and
programming has narrowed significantly in recent
years as the abstraction level of programming
languages has gone up. Programming language
features related to low level resource management
like explicit memory management (destructors)
have disappeared from modern languages and
have been replaced by services provided by
compilers, virtual machines or application serv-
ers. New features have been added to languages
like Java and C# to make them more modelling
like. For instance, annotations can be used to
stereotype artefacts, assertions and test cases
can be used to express constraints and therefore
method semantics, and generic types facilitate the
representation of one-to-many relationships.

However, there is one aspect where a deep
conceptual gap between modelling languages
and programming languages remains: relation-
ships. While relationships are first-class citizens
in modelling languages like UML, EMF and ER,
they are not explicitly represented in modern
programming languages. The state of the art is
that relationships are manually coded. This is an
error-prone process, and the hand-crafted code
resulting from it is hard to maintain. In particu-
lar, it is very difficult to reverse engineer models
from this code. Østerbye (2007) has compared
this practice with “translating while loops into
goto statements”. The situation can be improved
by generating code, and many case tools contain
simple, template-based code generators for this
purpose. There has been research into adding
explicit relationships to programming language
starting with Rumbaugh’s Data Structure Man-

ager (DSM) (Rumbaugh, 1987). A more recent
approach to add relationships to the Java language
is RelJ (Bierman & Wren, 2005). An alternative
solution that has been explored is to add rela-
tionships libraries to Java (Østerbye, 2007) and
AspectJ (Pearce & Noble, 2006). Code generation
patterns for relationships have been investigated
by Noble (1997) and Genova, del Castillo and
Llorens (2003). The focus of this research is the
representation of explicit relationships between
objects. However, in many cases relationships are
not explicitly defined but instead specified by rules.
The support modelling languages have to express
this kind of rules is weak. UML for instance has
the concept of derived association for this pur-
pose. The isDerived attribute in Association is
defined as a boolean that “specifies whether the
association is derived from other model elements
such as other associations or constraints” (UML,
2004). However, this definition is very vague and
hardly suitable to automate the implementation
of derived associations.

In this paper we investigate several commonly
encountered implementation patterns for rules
defining relationships between objects. We then
point out the weaknesses of this approaches and
discuss several alternative strategies. Finally,
we present a simple scripting language for rules
and a rule compiler that addresses the problems
discussed earlier.

IMPLEMENtAtION PAttErNs

In object-oriented design, classes are used to
represent vocabularies. More recently the term
ontology has become fashionable to refer to these
vocabularies, emphasizing the computation-inde-
pendent aspect of the concepts described. Many
software engineers prefer the term domain model.
Business rules are then used to define relationships
between instances of these classes. These rules
are recorded during requirement analysis, then
become part of the design model and are finally

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/business-rules-application-code/35865

Related Content

Normalization and Translation of XQuery
Norman Mayand Guido Moerkotte (2010). Advanced Applications and Structures in XML Processing: Label

Streams, Semantics Utilization and Data Query Technologies (pp. 283-307).

www.irma-international.org/chapter/normalization-translation-xquery/41509

Design Recovery of Web Applications Transactions
Scott Tilley, Damiano Distanteand Shihong Huang (2005). Advances in UML and XML-Based Software

Evolution (pp. 1-19).

www.irma-international.org/chapter/design-recovery-web-applications-transactions/4928

Graphical Notations for Rule Modeling
Sergey Lukichevand Mustafa Jarrar (2009). Handbook of Research on Emerging Rule-Based Languages

and Technologies: Open Solutions and Approaches (pp. 76-98).

www.irma-international.org/chapter/graphical-notations-rule-modeling/35855

On the Application of UML to Designing On-line Business Model
Yongtae Parkand Seonwoo Kim (2003). UML and the Unified Process (pp. 39-47).

www.irma-international.org/chapter/application-uml-designing-line-business/30536

Sharing Ontologies and Rules Using Model Transformations
Milan Milanovic, Dragan Djuric, Dragan Gasevicand Vladan Devedzic (2009). Handbook of Research on

Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (pp. 471-492).

www.irma-international.org/chapter/sharing-ontologies-rules-using-model/35871

http://www.igi-global.com/chapter/business-rules-application-code/35865
http://www.irma-international.org/chapter/normalization-translation-xquery/41509
http://www.irma-international.org/chapter/design-recovery-web-applications-transactions/4928
http://www.irma-international.org/chapter/graphical-notations-rule-modeling/35855
http://www.irma-international.org/chapter/application-uml-designing-line-business/30536
http://www.irma-international.org/chapter/sharing-ontologies-rules-using-model/35871

