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IntroductIon

One of the main goals of machine learning methods is to build a model or hypothesis from a set of data 
(also called evidence). After this learning process, the quality of the hypothesis must be evaluated as 
precisely as possible. For instance, if prediction errors have negative consequences in a certain applica-
tion domain of a model (for example, detection of carcinogenic cells), it is important to know the exact 

ABStrAct

The evaluation of machine learning models is a crucial step before their application because it is es-
sential to assess how well a model will behave for every single case. In many real applications, not only 
is it important to know the “total” or the “average” error of the model, it is also important to know 
how this error is distributed and how well confidence or probability estimations are made. Many cur-
rent machine learning techniques are good in overall results but have a bad distribution assessment of 
the error. For these cases, calibration techniques have been developed as postprocessing techniques in 
order to improve the probability estimation or the error distribution of an existing model. This chapter 
presents the most common calibration techniques and calibration measures. Both classification and 
regression are covered, and a taxonomy of calibration techniques is established. Special attention is 
given to probabilistic classifier calibration.
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accuracy of the model. Therefore, the model evaluation stage is crucial for the real application of machine 
learning techniques. Generally, the quality of predictive models is evaluated by using a training set and 
a test set (which are usually obtained by partitioning the evidence into two disjoint sets) or by using 
some kind of cross-validation or bootstrap if more reliable estimations are desired. These evaluation 
methods work for any kind of estimation measure. It is important to note that different measures can be 
used depending on the model. For classification models, the most common measures are accuracy (the 
inverse of error), f-measure, or macro-average. In probabilistic classification, besides the percentage 
of correctly classified instances, other measures such as logloss, mean squared error (MSE) (or Brier’s 
score) or area under the ℜOC curve (AUC) are used. For regression models, the most common measures 
are MSE, the mean absolute error (MAE), or the correlation coefficient.

With the same result for a quality metric (e.g. MAE), two different models might have a different 
error distribution. For instance, a regression model R1 that always predicts the true value plus 1 has a 
MAE of 1. However, it is different to a model R2 that predicts the true value for n - 1 examples and has 
an error of n for one example. Model R1 seems to be more reliable or stable, i.e., its error is more pre-
dictable. Similarly, two different models might have a different error assessment with the same result 
for a quality metric (e.g. accuracy). For instance, a classification model C1 which is correct 90% of the 
cases with a confidence of 0.91 for every prediction is preferable to model C2 which is correct 90% of 
the cases with a confidence of 0.99 for every prediction. The error self-assessment, i.e., the purported 
confidence, is more accurate in C1 than in C2.

In both cases (classification and regression), an overall picture of the empirical results is helpful in 
order to improve the reliability or confidence of the models. In the case of regression, the model R1, 
which always predicts the true value plus 1, is clearly uncalibrated, since predictions are usually 1 unit 
above the real value. By subtracting 1 unit from all the predictions, R1 could be calibrated and interest-
ingly, R2 can be calibrated in the same way. In the case of classification, a global calibration requires the 
confidence estimation to be around 0.9 since the models are right 90% of the time.

Thus, calibration can be understood in many ways, but it is usually built around two related issues: 
how error is distributed and how self-assessment (confidence or probability estimation) is performed. 
Even though both ideas can be applied to both regression and classification, this chapter focuses on error 
distribution for regression and self-assessment for classification.

Estimating probabilities or confidence values is crucial in many real applications. For example, if 
probabilities are accurated, decisions with a good assessment of risks and costs can be made using utility 
models or other techniques from decision making. Additionally, the integration of these techniques with 
other models (e.g. multiclassifiers) or with previous knowledge becomes more robust. In classification, 
probabilities can be understood as degrees of confidence, especially in binary classification, thus accom-
panying every prediction with a reliability score (DeGroot & Fienberg, 1982). In regression, predictions 
might be accompanied by confidence intervals or by probability density functions.

Therefore, instead of redesigning existing methods to directly obtain good probabilities or better 
error distribution, several calibration techniques have recently been developed. A calibration technique 
is any postprocessing technique that attemps to improve the probability estimation or to improve the 
error distribution of a given predictive model. A general calibration technique can be used to improve 
any existing machine learning method: decision trees, neural networks, kernel methods, instance-based 
methods, Bayesian methods, etc. It can also be applied to hand-made models, expert systems or com-
bined models
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