This paper appears in the publication, International Journal of Ambient Computing and Intelligence, Volume 1, Issue 2 edited by Kevin Curran © 2009, IGI Global

Issues for the Evaluation of Ambient Displays

Xiaobin Shen, University of Melbourne, Australia Andrew Vande Moere, University of Sydney, Australia Peter Eades, University of Sydney, Australia Seok-Hee Hong, University of Sydney, Australia

ABSTRACT

This article is motivated by two evaluation case studies of ambient information displays. Firstly, an intrusive evaluation of a display called MoneyColor concentrates on the relationship between "distraction" and "comprehension". This revealed that the comprehension is in direct proportion to display-distraction, but there is no clear relationship between comprehension and self-interruption. Secondly, a non-intrusive evaluation of a display called Fisherman described a quantitative measurement of user "interest" and applied this measurement to investigate "evaluation time" issue. These experiments give some insight into number of issues in evaluation of ambient displays. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords: Case Study; Computer Graphics; System Evaluation

INTRODUCTION

In this article, the term "ambient display" is used generically to denote a subfield in information visualization research that investigates the presentation of information through the periphery of user attention. It has its roots in the ubiquitous computing dream of Weiser (Matthews, T., et al., 2003). Related terminologies include peripheral

displays (Matthews, T., et al., 2003), informative art (Future-Application-Lab), notification systems (McCrickard, D. S., et al., 2003), and even ambient information systems (Pousman, Z., & Stasko, J., 2006). The differences between these terms are not immediately obvious, and perhaps the subtle disparities are not significant.

The functional relationship between ambient displays and more generally,

information visualization, has not been clearly defined. This article treats ambient displays as a specific type of information visualization characterized by two design principles: attention and aesthetics. Mainstream information visualization demands full-attention (e.g. users explore, zoom and select information mainly in the primary focus of their attention [Somervell, J., et al., 2002]), while ambient displays only require partial attention, in that human attention can also be committed to other tasks at hand. Also, the use or consideration of visual aesthetics is at most a secondary concern in the design of most information visualization applications (versus the currently more dominant focus on measuring and optimizing the effectiveness and efficiency of visualizations [Lau, A., & Moere, A. V., 2007]). However, aesthetics is a key issue in the development of ambient displays, which generally require being visually unobtrusive but still needing to draw user interest by way of enticing and maintaining human curiosity through visual theatrics, even over longer periods of time.

To date, many ambient displays have been designed and some have been commercialized (e.g. ambient orb [Ambient-Device, 2008], ambient umbrella [Ambient-Device, 2008], ambient football scorecast [Ambient-Device, 2008]). Furthermore, most ambient display design approaches use vision, audio and tactile senses. Info Canvas (Plaue, C., Miller, T., & Stasko, J., 2004) is a typical visual example, which uses a beach scene to depict multiple pieces of real-time information. Other similar examples include: the Digital Family Portrait (Mynatt, E. D., et al., 2001) (which uses the density of icons in a band to represent a measurement for one habit of a user); the Kandinsky system (Fogarty, J., Forlizzi, J., & Hudson, S. E., 2001) (provides an artistic collage of images to represent email notes and news articles); and the Interactive Poetic Garden (White, T., & Small, D., 1998).

Lumitouch (Chang, A., et al., 2001) is a tactile example, which can transmit emotional content when the picture frame is touched. Other similar systems include: Vispad (Weissgerber, D., Bridgeman, B., & Pang, A., 2004) (a new haptic data display), Water lamp and Pinwheel (Dahley, A., Wisneski, C., & Ishii, H., 1998), Dangling String (Weiser, M., & Brown, J. S.), Information Percolator (Heiner, J. M., Hudson, S. E., & Tanaka, K., 1999), BusMobile (Mankoff, J., et al., 2003), Daylight Display (Mankoff, J., et al., 2003), Personal Ambient Display (Wisneski, C., et al., 2006), and Haptic shoes (Fu, X., & D. Li., 2005). Non-speech audio glance (Hudson, S. E., & Smith, I., 1996) is an example of an ambient audio display, which represents important properties of a message as a concise sound. Musicbox (Ullmer, B., & Ishii, H., 2006) is a wooden box which glows and plays music in response to light, movement and live music around a remote piano.

Unfortunately, little progress has been made in defining evaluation methodologies for ambient displays, in comparison to the design. Mankoff et al. (2003) proposed a heuristic evaluation for ambient displays. Pousman et al. (2006) proposed a four dimensional guide for the evaluation of ambient information systems. McCrickard (2003) proposed a so-called IRC framework (I-Interruption, R-Reaction, C-Comprehension) to evaluate the notification system. Shami et al. (2005) proposed the CUEPD (Context of Use Evaluation of Peripheral Displays) evaluation method to capture context of use through individualized scenario building, enactment and reflection. In this article, we also adapt a DECIDE framework from Preece (2002) (originally

9 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: <a href="https://www.igi-

global.com/article/issues-evaluation-ambient-displays/3880

Related Content

Leveraging Artificial Intelligence in Service Marketing to Enhance Electronic Word of Mouth (eWOM)

Rajeev Semwal, Nandita Tripathiand Udit Kumar Pandey (2024). *Al Innovations in Service and Tourism Marketing (pp. 249-269).*

www.irma-international.org/chapter/leveraging-artificial-intelligence-in-service-marketing-to-enhance-electronic-word-of-mouth-ewom/352832

An Activity Monitoring Application for Windows Mobile Devices

Hayat Al Mushcab, Kevin Curranand Jonathan Doherty (2010). *International Journal of Ambient Computing and Intelligence (pp. 1-18).*

www.irma-international.org/article/activity-monitoring-application-windows-mobile/46020

Revolutionizing Work: The Influence of Artificial Intelligence on Employee Experience

Pradnya Bhatkulkar (2024). Exploring the Intersection of AI and Human Resources Management (pp. 66-84).

www.irma-international.org/chapter/revolutionizing-work/336262

Extending a Conceptual Modeling Language for Adaptive Web Applications

Raoudha Ben Djemaa, Ikram Amousand Abdelmajid Ben Hamadou (2010). *Methodological Advancements in Intelligent Information Technologies: Evolutionary Trends (pp. 299-319).*

www.irma-international.org/chapter/extending-conceptual-modeling-language-adaptive/38532

Simulation of Human Brain: Artificial Intelligence-Based Learning

Navita Malikand Arun Solanki (2021). Impact of Al Technologies on Teaching, Learning, and Research in Higher Education (pp. 150-160).

www.irma-international.org/chapter/simulation-of-human-brain/261500