
160

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

A Framework for Cost-
Based Query Optimization

in Native XML Database
Management Systems

Andreas M. Weiner
University of Kaiserslautern, Germany

Theo Härder
University of Kaiserslautern, Germany

introduction

In the last few years, XML became the de-facto
standard for exchanging structured and semi-struc-
tured data in business as well as in research. The

database research community took this development
into account by proposingamong others—native
XML database management systems (XDBMSs)
for efficient and transactional processing of XML
documents.

AbstrAct

Since the very beginning of query processing in database systems, cost-based query optimization has been
the essential strategy for effectively answering complex queries on large documents. XML documents
can be efficiently stored and processed using native XML database management systems. Even though
such systems can choose from a huge repertoire of join operators (e. g., Structural Joins and Holistic
Twig Joins) and various index access operators to efficiently evaluate queries on XML documents, the
development of full-fledged XML query optimizers is still in its infancy. Especially the evaluation of
complex XQuery expressions using these operators is not well understood and needs further research.
The extensible, rule-based, and cost-based XML query optimization framework proposed in this chapter,
serves as a testbed for exploring how and whether well-known concepts from relational query optimization
(e. g., join reordering) can be reused and which new techniques can make a significant contribution to
speed-up query execution. Using the best practices and an appropriate cost model that will be developed
using this framework, it can be turned into a robust cost-based XML query optimizer in the future.

DOI: 10.4018/978-1-61520-727-5.ch008

161

A Framework for Cost-Based Query Optimization in Native XML Database Management Systems

As in the relational world, the quality of
query optimizers plays an important role for the
acceptance of database systems by a wide range
of users, especially in business scenarios where
longer-than-necessary running queries can cause
high costs. One of the main tasks in query evalu-
ation is plan generation, where physical opera-
tors are arranged in such a way, that the given
optimization goal (e. g., maximum throughput)
is satisfied while the semantics of the query is
still preserved.

In recent years, several join operators for the
evaluation of structural relationships like child
or descendant have been proposed. All of them
belong to one of the major classes of XML join
operators: Structural Joins (SJs) (Al-Khalifa et
al., 2002) and Holistic Twig Joins (HTJs) (Bruno,
Koudas, & Srivastava, 2002). Being binary join
operators, SJ operators decompose tree-structured
query patterns, which are also called twig query
patterns, into binary relationships and evalu-
ate each of them separately, before they merge
intermediate results to get the final query result.
On the other hand, HTJ operators are able to
evaluate twigs holistically. A precondition for the
efficient evaluation of SJ and HTJ operators is a
node labeling scheme (O’Neil et al., 2004; Härder,
Haustein, Mathis, & Wagner, 2007) that assigns to
each node in an XML document a unique identifier
that (1) allows to decide, without accessing the
document, for two given nodes whether they are
structurally related to each other and (2) that does
not require re-labeling even after modifications
to the document.

Besides SJ and HTJ operators, several ap-
proaches for indexing XML documents were
proposed. These approaches can be classified into
a hierarchy of access methods w. r. t. their avail-
ability in a native XDBMS. Primary access paths
(PAPs) provide input for navigational primitives
as well as for SJ and HTJ operators. The most
important representative of this class is a document
index that indexes a document using the unique

node labels as keys. Secondary access paths1
(SAPs) provide more efficient access to specific
element nodes using element indexes (Bruno et al.,
2002). They are absolutely necessary for efficient
evaluation of structural predicates by SJ or HTJ
operators. Tertiary access paths (TAPs) like path
indexes (Milo & Suciu, 1999) employ structural
summaries such as DataGuides (Goldman &
Widom, 1997) for providing efficient access to
nodes satisfying structural relationships like child
or descendant. Content indexes (McHugh & Wi-
dom, 1999) support efficient access to text nodes
or attribute-value nodes. Finally, hybrid indexes
(Wang, Park, Fan, & Yu, 2003), which are also
called content-and-structure (CAS) indexes, are
a promising approach for indexing content and
structure at a time. Compared to PAPs, which are
available per default in a native XDBMS, SAPs
and TAPs have to be manually created by the
database administrator. Furthermore, TAPs like
path indexes or CAS indexes can replace complete
trees of SJ and HTJ operators and become—if
available—first-class citizens for query evalu-
ation. As maintenance and updates of TAPs can
cause substantial overhead, they will only be cre-
ated by the database administrator in rare cases,
e.g., for frequently queried subtrees.

Motivation

If we have a look at the status quo of native XML
query evaluation, several unsolved problems
arise. In the presence of a rich variety of physi-
cal operators, most of all empirical evaluations
were performed using self-generated or slightly
modified well-known documents with simple
queries. By doing so, the superiority of a par-
ticular operator was shown and probable weak-
nesses were suppressed. Today, it is unknown how
these operators really behave in realistic native
XDBMS scenarios. For example, real-world
XQuery expressions are provided by the XMark
benchmark queries (Schmidt et al., 2002) or by

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/framework-cost-based-query-optimization/41504

Related Content

RUP: A Process Model for Working with UML
Wolfgang Hesse (2001). Unified Modeling Language: Systems Analysis, Design and Development Issues

(pp. 61-74).

www.irma-international.org/chapter/rup-process-model-working-uml/30571

Rules Verification and Validation
Antoni Ligezaand Grzegorz Nalepa (2009). Handbook of Research on Emerging Rule-Based Languages

and Technologies: Open Solutions and Approaches (pp. 273-301).

www.irma-international.org/chapter/rules-verification-validation/35863

Rules Capturing Events and Reactivity
Adrian Paschkeand Harold Boley (2009). Handbook of Research on Emerging Rule-Based Languages and

Technologies: Open Solutions and Approaches (pp. 215-252).

www.irma-international.org/chapter/rules-capturing-events-reactivity/35861

Closing the Gap Between XML and Relational Database Technologies: State-of-the-Practice,

State-of-the-Art and Future Directions
Mary Ann Malloyand Irena Mlynkova (2009). Open and Novel Issues in XML Database Applications: Future

Directions and Advanced Technologies (pp. 1-27).

www.irma-international.org/chapter/closing-gap-between-xml-relational/27774

Visualising COBOL Legacy Systems with UML: An Experimental Report
Steve McRobb, Richard Millham, Jianjun Puand Hongji Yang (2005). Advances in UML and XML-Based

Software Evolution (pp. 209-256).

www.irma-international.org/chapter/visualising-cobol-legacy-systems-uml/4937

http://www.igi-global.com/chapter/framework-cost-based-query-optimization/41504
http://www.irma-international.org/chapter/rup-process-model-working-uml/30571
http://www.irma-international.org/chapter/rules-verification-validation/35863
http://www.irma-international.org/chapter/rules-capturing-events-reactivity/35861
http://www.irma-international.org/chapter/closing-gap-between-xml-relational/27774
http://www.irma-international.org/chapter/visualising-cobol-legacy-systems-uml/4937

