
184

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

XML Stream Processing:
Stack-Based Algorithms

Junichi Tatemura
NEC Laboratories America, USA

Introduction

XML has become an essential format in data ex-
change application domains, where an application
processes data in XML documents sent from other
systems. In order to ensure interoperability, XML
data is usually sent as text data, which needs parsing
before being consumed by the application. Various
XML stream processing technologies have been

developed to enable query processing over stream-
ing XML documents for such scenarios.

XML stream processing is to evaluate queries
only by a single scan over an XML document. It
requires different technologies from querying over
disk-resident XML data where an XML can be con-
verted into proprietary data structure with indexing.
Moreover, in this streaming environment, we should
avoid materializing the entire document as a tree in
the main memory. A system often needs to evaluate
a query in a low memory-profile environment. In

Abstract

This chapter reviews recent advances on stream XML query evaluation algorithms with stack-based
encoding of intermediary data. Originally proposed for disk-resident XML, the stack-based architecture
has been extended for streaming algorithms for both single and multiple query processing, ranging from
XPath filtering to more complex XQuery. The key benefit of the stack-based architecture is its succinct
encoding of partial query results, which can cause exponential enumeration if encoded naively. In ad-
dition, the chapter discusses opportunities to integrate benefits demonstrated in the reviewed work. For
single-query processing, a sketch is given for an integrated algorithm, StreamTwig2Stack, that achieves
all the benefits of existing algorithms in terms of functionality, time complexity, and buffer memory
optimality.

DOI: 10.4018/978-1-61520-727-5.ch009

185

XML Stream Processing

some cases, XML processing is embedded in an
application as a utility component. In other cases,
a system must achieve high throughput to process
a large amount of documents and/or queries.

XML stream processing has been extensively
studied in recent years. Motivated by a variety
of applications, these studies address various
issues under different assumptions and problem
statements.

Earlier work typically targets information
filtering applications, where a query is a pattern
matching expression that returns a Boolean value.
Received an XML document, the system should
identify a small fraction of matching queries from
a large set of registered queries. Many filtering
algorithms naturally employ an automaton-based
approach, where the query results are modeled as
acceptance states of automaton.

As XML became pervasive in data exchange,
various application needs emerged beyond filter-
ing. Many applications use queries to express more
complex patterns that extract structured data from
an XML document. In such a scenario, structural
pattern matching in XML queries can generate a
large amount of intermediary data, which has been
recognized as a challenging research issue.

In this chapter, we give a review mainly on re-
cent advance on stream XML query evaluation al-
gorithms that efficiently manage intermediary data
in a special data structure based on multiple stacks.
Originally, this succinct encoding of intermediary
data was proposed for processing disk-resident
XML data (Bruno, Koudas, & Srivastava, 2002).
However, the proposed algorithms, PathStack
and TwigStack, have inspired various streaming
algorithms, which have been demonstrated to be
efficient for various applications.

We categorize algorithms into two types and
review them separately: single-query processing
and multi-query processing. At the end of each
review, we discuss approaches to integrate ben-
efits of the reviewed algorithms. For single-query
processing, we also give a sketch of an integrated
algorithm, StreamTwig2Stack, that achieves all the

benefits of existing algorithms (functionality, time
complexity, and buffer memory optimality).

Background

Queries

XPath and XQuery

In the context of stream processing, most research
focuses on Univariate XPath, a subset of standard
XPath 1.0, with the following major limitations:
(1) it only supports forward axes (child, descen-
dant, and attribute axes); (2) it does not allow a
predicate that compares values of multiple nodes
(e.g., A[B > C] is not allowed). Some work also
supports backward axes (parent and ancestor axes)
in addition. Also, it is known that an XPath query
with a backward axis can be rewritten into one
only with forward axes (Olteanu, Meuss, Furche,
& Bry, 2002).

In order to specify various fragments of
XPath within Univariate XPath, the literature
often uses a notation PS, where S is a subset of
features {/,//,*,[]} that are supported by a query.
For instance, P{/,//} is XPath that supports child and
descendant axes, and P{/,//,*,[]} supports predicates
and a wildcard in addition.

XQuery is a further complex query language.
Most research work on streaming XQuery pro-
cessing focuses on how to support FOR, LET,
WHERE, and RETURN clauses.

Twig Query

With a research focus on structural pattern
matching, many studies do not directly discuss
XPath/XQuery but model a query as a tree pat-
tern, called a twig query. A node (query node) of
the twig corresponds to a node test, and an edge
between two nodes represents their structural
relationship (i.e., axes). The query result is an
ordered or unordered list of tuples, each of which

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/xml-stream-processing/41505

Related Content

Semantic Web Rule Languages for Geospatial Ontologies
Philip D. Smart, Alia Abdelmotyand Baher A. El-Geresy (2009). Handbook of Research on Emerging Rule-

Based Languages and Technologies: Open Solutions and Approaches (pp. 149-169).

www.irma-international.org/chapter/semantic-web-rule-languages-geospatial/35858

Rational Unified Process and Unified Modeling Language - A GOMS Analysis
Keng Siau (2001). Unified Modeling Language: Systems Analysis, Design and Development Issues (pp.

107-116).

www.irma-international.org/chapter/rational-unified-process-unified-modeling/30574

Abstracting UML Behavior Diagrams for Verification
María del Mar Gallardo, Jesús Martinez, Pedro Merinoand Ernesto Pimentel (2005). Software Evolution

with UML and XML (pp. 296-320).

www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617

Developing Rule-Based Web Applications: Methodologies and Tools
Vassilis Paptaxiarhis, Vassileios Tsetsos, Isambo Karaliand Panagiotis Stamotopoulos (2009). Handbook

of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (pp.

371-392).

www.irma-international.org/chapter/developing-rule-based-web-applications/35867

Segmented Dynamic Time Warping: A Comparative and Applicational Study
Ruizhe Ma, Azim Ahmadzadeh, Soukaina Filali Boubrahimiand Rafal A. Angryk (2019). Emerging

Technologies and Applications in Data Processing and Management (pp. 1-19).

www.irma-international.org/chapter/segmented-dynamic-time-warping/230681

http://www.igi-global.com/chapter/xml-stream-processing/41505
http://www.irma-international.org/chapter/semantic-web-rule-languages-geospatial/35858
http://www.irma-international.org/chapter/rational-unified-process-unified-modeling/30574
http://www.irma-international.org/chapter/abstracting-uml-behavior-diagrams-verification/29617
http://www.irma-international.org/chapter/developing-rule-based-web-applications/35867
http://www.irma-international.org/chapter/segmented-dynamic-time-warping/230681

