
283

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Normalization and 
Translation of XQuery

Norman May
SAP Research, CEC Karlsruhe Vincenz-Prießnitz-Str. 1 Germany

Guido Moerkotte
Database Research Group University of Mannheim, Germany

INTRODUCTION

As XQuery is used in an increasing number of 
applications, the execution time of these queries 
becomes more important for the acceptance of 
this query language. Especially for queries where 
potentially large amounts of XML are processed, 
strategies to reduce the query processing time need 
to be applied. The first XQuery processors often 
implemented a number of heuristics for this pur-

pose. As XQuery becomes more popular, specific 
storage and index structures as well as specialized 
execution strategies were implemented.

Recently algebraic optimization techniques, as 
they are standard in relational databases, were used 
to build XQuery processors where optimizations are 
stated as algebraic equivalences, e.g. (Naughton et 
al., 2001; Jagadish et al., 2002; Fiebig et al., 2002; 
May et al., 2006; Ozcan et al., 2005; Nicola & van 
der Linden, 2005; Florescu et al., 2004; Boncz et 
al., 2006; Liu et al., 2005; Pal et al., 2005). This 
development is motivated by the ability (1) to apply 

ABSTRACT

Early approaches to XQuery processing proposed proprietary techniques to optimize and evaluate XQuery 
statements. In this chapter, the authors argue for an algebraic optimization and evaluation technique 
for XQuery as it allows us to benefit from experience gained with relational databases. An algebraic 
XQuery processing method requires a translation into an algebra representation. While many publica-
tions already exist on algebraic optimizations and evaluation techniques for XQuery, an assessment 
of translation techniques is required. Consequently, they give a comprehensive survey for translating 
XQuery into various query representations. The authors relate these approaches to the way normaliza-
tion and translation is implemented in Natix and discuss these two steps in detail. In their experience, 
their translation method is a good basis for further optimizations and query evaluation.

DOI: 10.4018/978-1-61520-727-5.ch013



284

Normalization and Translation of XQuery

optimizations known from relational databases 
and adopt them for XML processing, (2) to prove 
the correctness of query optimizations based on a 
formally defined query representation. Relational 
query optimizers today approach query optimiza-
tion in a sequence of six steps:

1.  Scan and Parse the query statement to 
analyze the lexical structure of the query.

2.  Normalization of the query, translation 
into an internal representation, type 
checking, and semantic analysis: This 
phase checks the semantic correctness of the 
query. At the same time, additional informa-
tion is attached to the parse tree, e.g. type 
information, references to schema informa-
tion, or references to available statistics. As 
the parse tree is not the most convenient 
representation of the query to apply opti-
mizations, it is translated into an internal 
query representation – usually an algebraic 
or calculus representation. The translation 
step may require some normalization to be 
applied before. The XQuery specification 
gives some rules for typing XQuery expres-
sions (Draper et al., 2007), but more precise 
results can sometimes be obtained. In this 
chapter, we will focus on this optimization 
phase, in particular the normalization and 
translation step.

3.  First heuristic optimization phase: In this 
phase the query optimizer applies heuristic 
optimizations. Some of these optimiza-
tions are hard to implement in a cost-based 
optimizer, e.g. predicate-move-around. 
Other optimizations applied in this phase 
prepare the query so that the search space 
of the cost-based optimizer is increased, e.g. 
query unnesting (May et al., 2004), (May et 
al., 2006) or view merging, and thus, often 
drastically improve the overall quality of 
the resulting query execution plan.

4.  Cost-based optimization phase: Based on 
cardinality estimates and a cost-model for 

possible implementations of a query, the 
cost-based optimizer generates equivalent 
plan alternatives, called query execution 
plan (QEP). These alternatives differ in 
the order of the involved operators or their 
implementations. Among all alternatives 
examined in this phase, the most efficient 
one is chosen. Several metrics are used as 
efficiency criteria, e.g. resource consumption 
or expected query execution time.

5.  Second heuristic optimization phase: This 
phase applies heuristic optimizations that 
are not considered in the previous phase, 
e.g. merging adjacent operators.

6.  Code generation: This phase transforms 
the QEP into an executable form.

In this chapter, we first discuss how an XQuery 
query can be translated into an internal represen-
tation that is close the well-known QGM-model 
used in IBM Starburst/DB2 (Haas et al., 1989). 
As several other query optimizers use a similar 
query representation, it is desirable to reuse their 
infrastructure to implement a query optimizer for 
XQuery. As (Grust et al., 2004) have pointed out, 
some care is required when a relational database 
is used to evaluate XQuery. Others discussed al-
gebraic optimizations for XQuery based on native 
XML database management systems, e.g. (May 
et al., 2006; May, 2007; Re et al., 2006).

After surveying existing approaches to al-
gebraic XQuery optimization and translation 
approaches, we introduce an algebra to represent 
XQuery statements that serve as input to algebraic 
optimizations. This algebra is defined over se-
quences of tuples as it is required to preserve the 
semantics of XQuery. Hence, it is not possible to 
directly apply algebraic optimizations known for 
SQL and relational databases to XQuery.

Then, we define the fragment of XQuery that 
is supported by our translation approach. This 
fragment covers a large fraction of the XQuery 
1.0 language. After that, we introduce a number 
of normalization rules that prepare the XQuery 



 

 

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/normalization-translation-xquery/41509

Related Content

Index Structures for XML Databases
Samir Mohammadand Patrick Martin (2010). Advanced Applications and Structures in XML Processing:

Label Streams, Semantics Utilization and Data Query Technologies  (pp. 98-124).

www.irma-international.org/chapter/index-structures-xml-databases/41501

Content-Based Publish/Subscribe for XML Data
Yuan Niand Chee-Yong Chan (2010). Advanced Applications and Structures in XML Processing: Label

Streams, Semantics Utilization and Data Query Technologies  (pp. 207-226).

www.irma-international.org/chapter/content-based-publish-subscribe-xml/41506

UML Modeling Support for Early Reuse Decisions in Component-Based Development
J. A. Sykesand P. Gupta (2001). Unified Modeling Language: Systems Analysis, Design and Development

Issues  (pp. 75-88).

www.irma-international.org/chapter/uml-modeling-support-early-reuse/30572

A Framework for Managing Consistency of Evolving UML Models
Tom Mens, Ragnhild Van Der Straetenand Jocelyn Simmonds (2005). Software Evolution with UML and

XML (pp. 1-30).

www.irma-international.org/chapter/framework-managing-consistency-evolving-uml/29608

XML Stream Processing: Stack-Based Algorithms
Junichi Tatemura (2010). Advanced Applications and Structures in XML Processing: Label Streams,

Semantics Utilization and Data Query Technologies  (pp. 184-206).

www.irma-international.org/chapter/xml-stream-processing/41505

http://www.igi-global.com/chapter/normalization-translation-xquery/41509
http://www.irma-international.org/chapter/index-structures-xml-databases/41501
http://www.irma-international.org/chapter/content-based-publish-subscribe-xml/41506
http://www.irma-international.org/chapter/uml-modeling-support-early-reuse/30572
http://www.irma-international.org/chapter/framework-managing-consistency-evolving-uml/29608
http://www.irma-international.org/chapter/xml-stream-processing/41505

