

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.irm-press.com

ITB10751

Chapter 5

A Generic Adaptation Framework for Web-Based Hypermedia Systems

Alexandros Paramythis, Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece

Constantine Stephanidis, Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece, & University of Crete, Greece

Abstract

This chapter introduces a framework intended for facilitating the implementation of Web-based adaptive hypermedia systems. The framework is orthogonal to Web "serving" approaches, and poses only minimal requirements in that direction. As such, it can be easily integrated into existing, non-adaptive Web-publishing solutions. This chapter presents in detail several aspects of the framework, and provides an overview of its application in the European Commission-funded IST-1999-20656 PALIO project ("Personalised Access to Local Information and Services for Tourists"). Furthermore, it discusses some of the lessons learned from our work on the framework thus far, as well as what we consider the most likely directions of future work in the area.

This chapter appears in the book Adaptable and Adaptive Hypermedia Systems by Sherry Y. Chen and George D. Magoulas. Copyright © 2005, IRM Press, an imprint of Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Introduction

Adaptation characterises software products that automatically configure their parameters according to the given attributes of individual users (e.g., mental/motor/sensory characteristics, requirements, and preferences), and to the particular context of use (e.g., hardware and software platform, environment of use). Adaptive software systems have been considered in a wide range of research efforts. The relevant literature offers a wealth of examples illustrating tools for constructing adaptive interaction (e.g., Brusilovsky, Kobsa, & Vassileva, 1998; Horvitz, Breese, Heckerman, Hovel, & Rommelse, 1998; Kobsa, & Pohl, 1995), and case studies in which adaptive interface technology has improved, or has the potential to improve, the usability of an interactive system (e.g., Dieterich, Malinowski, Kühme, & Schneider-Hufschmidt, 1993; Benyon, 1997).

Adaptive hypermedia systems (AHS for short), in particular, are part of a relatively new area that has drawn considerable attention since the advent of the Web. There exist today numerous AHS, in various applications domains, with a great variety of capabilities (see, e.g., Ardissono, & Goy, 1999; Balabanovic, & Shoham, 1997; Brusilovsky, Kobsa, & Vassileva, 1998; Henze, 2001; Oppermann, & Specht, 1998; Kobsa, 2001). Major categories of AHS include educational hypermedia, online information systems, online help systems, information retrieval systems, and institutional hypermedia.

This chapter presents a generic framework for the development of adaptive Web-based hypermedia systems and services. Adaptation, in this context, implies the capability, on the part of the system, to capture and represent knowledge concerning alternative instantiations suitable for different users, contexts, purposes, and so forth, as well as for reasoning about those alternatives to arrive at adaptation decisions. Furthermore, adaptation implies the capability of assembling, coherently presenting, and managing at run-time the appropriate alternatives for the current user, purpose, and context of use.

In the context of this chapter, the term "framework" is used to refer to an architectural design describing the components of the system and the way they interact (Campbell, Islam, Johnson, Kougiouris, & Madany, 1997). The confines of an architectural framework for software systems are perhaps best described as per Jacobson, Griss, and Johnson (1997):

"The software architecture, first of all, defines a structure. Software components have to fit into some kind of design...Second, the architecture defines the interfaces between components. It defines the patterns by which information is passed back and forth through these interfaces."

The presented framework comprises both implemented components and specifications (in the form of programmatic interfaces and associated semantic "contracts") of how core and external components interact to attain adaptive system behaviour. The framework has been implemented in Java and comprises concrete classes, which implement the

22 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/generic-adaptation-framework-webbased/4180

Related Content

From Illustration to Gamification of the Book: Re-Developing Aesthetics in Publishing, Re-Inventing Taste in the Digital Era

Christina Banou (2016). Experimental Multimedia Systems for Interactivity and Strategic Innovation (pp. 176-194).

www.irma-international.org/chapter/from-illustration-to-gamification-of-the-book/135129

Networked Virtual Environments

Christos J. Bouras, Eri Giannakaand Thrasyvoulos Tsiatsos (2011). *Gaming and Simulations: Concepts, Methodologies, Tools and Applications (pp. 1108-1114).* www.irma-international.org/chapter/networked-virtual-environments/49438

A Hyperbolic Arnold's Cat Map-Based System for Multimedia Data Encryption

Amine Rahmani (2021). *International Journal of Multimedia Data Engineering and Management (pp. 57-71).*

www.irma-international.org/article/a-hyperbolic-arnolds-cat-map-based-system-for-multimedia-data-encryption/276400

Adaptive Multicarrier Frequency Hopping Spread Spectrum Combined with Channel Coding

Abid Yahya, Othman Sidek, Farid Ghani, R. Badlishah Ahmadand M. F. M. Salleh (2011). *Handbook of Research on Mobility and Computing: Evolving Technologies and Ubiquitous Impacts (pp. 157-174).*

www.irma-international.org/chapter/adaptive-multicarrier-frequency-hopping-spread/50585

Vehicular Delay Tolerant Networks

Daniel Câmara, Nikolaos Frangiadakis, Fethi Filaliand Christian Bonnet (2011). Handbook of Research on Mobility and Computing: Evolving Technologies and Ubiquitous Impacts (pp. 356-367).

www.irma-international.org/chapter/vehicular-delay-tolerant-networks/50598