
 63

Chapter IV
Towards Code Reuse and

Refactoring as a Practice within
Extreme Programming

Vijayan Sugumaran
Oakland University, USA

Gerald DeHondt
Grand Valley State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Software reuse has been discussed in the literature for the past three decades and is widely seen as one
of the major areas for improving productivity. Agile development techniques were first developed in the
mid-1990s as a code-oriented method of software development that seeks to improve upon the traditional
plan-based methodologies. Both approaches bring value to the software development process. The
purpose of this chapter is to propose a framework that will integrate the strengths of code reuse into
the Extreme Programming methodology. It is believed that this approach will lead to a more effective
method of software development.

Introduction

Agile software development first began in the
mid-1990s as an alternative to the traditional
Systems Development Life Cycle or plan-based

methodologies widely implemented at the time.
These lifecycle methodologies take a phased ap-
proach to systems development, requiring that one
phase be completed prior to beginning the next
phase (Hoffer et al. 1998). Agile methods, on the

64

Towards Code Reuse and Refactoring as a Practice within Extreme Programming

other hand, focus on iterative software develop-
ment, the continuous implementation of working
code. From the beginning of the agile “revolu-
tion”, specific methodologies have continued to
refine these techniques, the most popular being
Extreme Programming (XP). This approach was
first implemented at Chrysler in 1996 (C3 Team
1998) as a way to accelerate development efforts
while producing better software. XP is an imple-
mentation of Agile development techniques based
upon twelve practices, one of which is refactor-
ing. Specifically, refactoring involves modifying
software to improve its internal structure in a
way that does not alter the external behavior of
the code (Fowler 1999).

At its core, Extreme Programming emphasizes
rapid and frequent feedback to the customers and
end users, unit testing, and continuous code re-
views. By focusing on rapid iterations of simpler
code, XP seeks to identify and resolve potential
pitfalls in the development process early, leading
to projects that remain focused on the ultimate
goal – timely delivery of a well-designed and
tested system that meets customer requirements.
This methodology works by bringing the whole
team together in the presence of simple practices,
with enough feedback to enable the team to see
where they are and tune the practices to their
unique situation. It also seeks to implement the
simplest design that will satisfy current user
requirements (Lindstrom and Jeffries 2004)
without attempting to anticipate future design or
user requirements.

Nerur and Balijepally (2007) state that agile
methods are people-centric, recognizing the value
that competent people and their relationships bring
to software development. In addition, it focuses on
providing high customer satisfaction through three
principles: quick delivery of quality software;
active participation of concerned stakeholders;
and creating and leveraging change (Highsmith
2002). Big upfront designs/plans and extensive
documentation are of little value to practitioners of
agile methods. Important features of this approach

include evolutionary delivery through short itera-
tive cycles — of planning, action, and reflection
— intense collaboration, self-organizing teams,
and a high degree of developer discretion (Nerur
and Balijepally 2007). Organizations undertaking
agile methodologies must invest in tools that sup-
port and facilitate rapid iterative development and
versioning/configuration management (Nerur,
Mahapatra, and Mangalaraj 2005). One way to
achieve this is through investment in a suitable
reuse strategy supporting agile development.

Reuse of existing software components has
been an area of investigation since the early
1980’s and is widely seen as one of the major
areas for improving software productivity. By
reusing previously tested and implemented code,
it is hoped that developers will become more ef-
ficient by not having to solve the same problem
twice. One of the key challenges with effectively
implementing a program of software reuse is
the identification of suitable components. If the
identification process consumes more resources
than saved in development time, these programs
will not be undertaken by developers.

Additional challenges encountered in this
approach include a lack of incentives, lack of
available resources, suitable component identi-
fication, and necessary tools for customization
and validation, among other items. In spite of
this, appropriate component reuse can integrate
previously implemented software into current
development projects serving to propagate vali-
dated code within the application infrastructure
(Ravichandran 2005).

Once the appropriate component has been
detected, it is then up to the developers to refac-
tor the software into a more suitable solution
to the problem at hand. Both techniques, code
reuse and refactoring, focus on efficiency in the
systems development process. This research
proposes an integrative framework that combines
code reuse - for component identification - and
refactoring - for improved software performance
and maintainability - into an overriding process

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/towards-code-reuse-refactoring-practice/4292

Related Content

Development of Interactive Web Sites to Enhance Police/Community Relations
Susan A. Baim (2003). ERP & Data Warehousing in Organizations: Issues and Challenges (pp. 233-250).

www.irma-international.org/chapter/development-interactive-web-sites-enhance/18565

Database Design Support: An Empirical Investigation of Perceptions and Performance
Chetan Sankarand Thomas E. Marshall (1993). Journal of Database Management (pp. 4-16).

www.irma-international.org/article/database-design-support/51121

The Expert’s Opinion
Mohammad Dadashzadeh (1992). Journal of Database Administration (pp. 35-40).

www.irma-international.org/article/expert-opinion/51100

Delivering the Whole Product: Business Model Impacts and Agility Challenges in a Network of

Open Source Firms
Joseph Feller, Patrick Finneganand Jeremy Hayes (2008). Journal of Database Management (pp. 95-108).

www.irma-international.org/article/delivering-whole-product/3387

Federated Process Framework in a Virtual Enterprise Using an Object-Oriented Database and

Extensible Markup Language
Kyoung-Il Bae, Jung-Hyun Kimand Soon-Young Huh (2003). Journal of Database Management (pp. 27-47).

www.irma-international.org/article/federated-process-framework-virtual-enterprise/3289

http://www.igi-global.com/chapter/towards-code-reuse-refactoring-practice/4292
http://www.irma-international.org/chapter/development-interactive-web-sites-enhance/18565
http://www.irma-international.org/article/database-design-support/51121
http://www.irma-international.org/article/expert-opinion/51100
http://www.irma-international.org/article/delivering-whole-product/3387
http://www.irma-international.org/article/federated-process-framework-virtual-enterprise/3289

