
58 Shoval & Kabeli

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Chapter IV

FOOM–Functional and
Object-Oriented

Methodology for Analysis
and Design of Information

Systems1

Peretz Shoval and Judith Kabeli
Ben-Gurion University, Israel

FOOM is an integrated methodology for analysis and design of information systems,
which combines the two essential software-engineering paradigms: the functional- (or
process-) oriented approach and the object-oriented (OO) approach. In FOOM, system
analysis includes both functional and data modeling activities, thereby producing both a
functional model and a data model. These activities can be performed either by starting with
functional analysis and continuing with data modeling, or vice versa. FOOM products of the
analysis phase include: a) a hierarchy of OO-DFDs (object-oriented data flow diagrams), and
b) an initial object schema, which can be created directly from the user requirements
specification or from an entity-relationship diagram (ERD) that is mapped to that object
schema. System design is performed according to the OO approach. The products of the
design phase include: a) a complete object schema, consisting of the classes and their
relationships, attributes, and method interfaces; b) object classes for the menus, forms and
reports; and c) a behavior schema, which consists of detailed descriptions of the methods and
the application transactions, expressed in pseudo-code and message diagrams. The seamless
transition from analysis to design is attributed to ADISSA methodology, which facilitates the
design of the menus, forms and reports classes, and the system behavior schema, from DFDs
and the application transactions.

This chapter appears in the book, Advanced Topics in Database Research by Keng Siau.
Copyright © 2002, Idea Group Publishing.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB7406

IDEA GROUP PUBLISHING

FOOM 59

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION

The Functional Approach and ADISSA Methodology
Many paradigms for system analysis and design have been proposed over the years.

Early approaches have advocated the functional (or process) approach. Common method-
ologies that support this approach are Structured System Analysis (SSA) and Structured
System Design (SSD) (DeMarco, 1978; Yourdon & Constantine, 1979). SSA is based on the
use of data flow diagrams (DFD), which define the functions to be performed by the system,
the data stores within the system, the external entities (usually user-entities, but sometimes
also other types, e.g., time-entities), and the data flows among the above components. Early
SSA and similar methodologies emphasized the functional aspects of system analysis,
neglecting somehow the structural aspect of data model. This was remedied by enhancing
those methodologies with a data model, usually the entity-relationship (ER) model (Chen,
1976), that is used to create a diagram of the data model, according to which the database
schema of the application is designed.

SSD is based on the use of Structure Charts (SC), which describe the division of the
system to program modules as well as the hierarchy of the different modules and their
interfaces. Certain techniques have been proposed to create SCs from DFDs (see Yourdon
& Constantine, 1979). The main difficulty of an approach where functional analysis is
followed by structured design lies in the transition from DFDs to SCs. The translation is
problematic because a DFD is a network structure, whereas a SC is a hierarchical structure.
In spite of various guidelines and rules for conversion from one structure to the other, the
problem has not been resolved by those methodologies (Coad & Yourdon, 1990).

Shoval (1988, 1991) developed the ADISSA methodology that solved this problem. It
uses hierarchical DFDs during the analysis stage (similar to other functional analysis
methodologies), but the design centers on transactions design. A transaction is a process
that supports a user who performs a business function, and is triggered as a result of an event.
Transactions will eventually become the application programs. The transactions are identi-
fied and derived from the DFDs. A transaction consists of elementary functions (namely,
functions that are not decomposed into sub-functions) that are chained through data flows,
and of data stores and external entities that are connected to those functions. Hence, a
transaction consists of at least one elementary function and one external entity, which serve
as its trigger. The process logic of each transaction is defined by means of structured
programming techniques. Based on the hierarchical DFDs and the transactions, ADISSA
methodology provides well-defined procedures to design the user-system interface (a menu-
tree), the inputs and outputs (forms and reports), the database schema, and detailed
transactions descriptions, which are eventually translated into application programs.

The sub-stage of interface design results in a menu-tree, that enables users to find and
to fire desired transactions. The menu-tree is derived from the hierarchy of DFDs in a semi-
algorithmic fashion, based on functions that are connected to user-entities. Briefly, a general
function that is connected to a user-entity produces a menu, at some level, while an
elementary function that is connected to a user-entity produces a menu item within the menu
created from its super-function. Obviously, the hierarchy of menus is equivalent to the
hierarchy of DFDs. Certain rules that take into account human-engineering factors enable us
to modify the initial menu-tree (which is generated algorithmically). (More details can be
found in the ADISSA references, and in Shoval, 1990.)

27 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/foom-functional-object-oriented-

methodology/4322

Related Content

Bioinformatics Data Management and Data Mining
Boris Galitsky (2005). Encyclopedia of Database Technologies and Applications (pp.

29-34).

www.irma-international.org/chapter/bioinformatics-data-management-data-mining/11118

UB2SQL: A Tool for Building Database Applications Using UML and B

Formal Method
Amel Mammarand Régine Laleau (2006). Journal of Database Management (pp. 70-

89).

www.irma-international.org/article/ub2sql-tool-building-database-applications/3363

Simple and Incremental Nearest-Neighbor Search in Spatio-Temporal

Databases
Katerina Raptopoulou, Apostolos N. Papadopoulosand Yannis Manolopoulos (2005).

Spatial Databases: Technologies, Techniques and Trends (pp. 204-224).

www.irma-international.org/chapter/simple-incremental-nearest-neighbor-search/29665

Metaschemas for ER, ORM and UML Data Models: A Comparison
Terry Halpin (2002). Journal of Database Management (pp. 20-30).

www.irma-international.org/article/metaschemas-orm-uml-data-models/3277

ERP Systems Impact on Organizations
Jonas Hedmanand Andreas Borell (2003). ERP & Data Warehousing in

Organizations: Issues and Challenges (pp. 1-21).

www.irma-international.org/chapter/erp-systems-impact-organizations/18552

http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.irma-international.org/chapter/bioinformatics-data-management-data-mining/11118
http://www.irma-international.org/article/ub2sql-tool-building-database-applications/3363
http://www.irma-international.org/chapter/simple-incremental-nearest-neighbor-search/29665
http://www.irma-international.org/article/metaschemas-orm-uml-data-models/3277
http://www.irma-international.org/chapter/erp-systems-impact-organizations/18552

