IDEAGROUPPUBLISHING

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA ITB7406
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

Chapter 1V

FOOM—unctional and
Object-Oriented
Methodology for Analysis
and Desgn of I nformation
Systemst

Peretz Shoval and Judith Kabeli
Ben-Gurion University, Israel

FOOM isanintegrated methodology for analysis and design of information systems,
which combines the two essential software-engineering paradigms: the functional- (or
process-) oriented approach and the object-oriented (OO) approach. In FOOM, system
analysis includes both functional and data modeling activities, thereby producing both a
functional model and adatamodel. These activitiescan be performed either by starting with
functional analysisand continuing with datamodeling, or viceversa. FOOM productsof the
analysisphaseinclude: a) ahierarchy of OO-DFDs(object-oriented datafl ow diagrams), and
b) an initial object schema, which can be created directly from the user requirements
specification or from an entity-relationship diagram (ERD) that is mapped to that object
schema. System design is performed according to the OO approach. The products of the
design phase include: a) a complete object schema, consisting of the classes and their
rel ationships, attributes, and method interfaces; b) object classes for the menus, formsand
reports; and c) abehavior schema, which consistsof detail ed descriptionsof themethodsand
theapplicationtransactions, expressedin pseudo-code and messagediagrams. Theseamless
transitionfromanalysistodesignisattributed to ADI SSA methodol ogy, whichfacilitatesthe
design of themenus, formsand reportsclasses, and the system behavior schema, from DFDs
and the application transactions.

This chapter appears in the book, Advanced Topics in Database Research by Keng Siau.
Copyright © 2002, Idea Group Publishing.



FOOM 59

INTRODUCTION

The Functional Approach and ADISSA M ethodology

Many paradigms for system analysis and design have been proposed.over-the years.
Early approaches have advocated the functional (or process)-approach. Common method-
ologies that support this approach are Structured System Analysis (SSA) and Structured
SystemDesign (SSD) (DeMarco, 1978; Y ourdon & Constantine, 1979). SSA isbased onthe
use of dataflow diagrams(DFD), which definethefunctionsto be performed by the system,
the datastoreswithin the system, the external entities (usually user-entities, but sometimes
also other types, e.g., time-entities), and the datafl ows among the above components. Early
SSA and similar methodologies emphasized the functional aspects of system analysis,
neglecting somehow the structural aspect of datamodel. Thiswas remedied by enhancing
those methodol ogies with a datamodel, usually the entity-relationship (ER) model (Chen,
1976), that is used to create a diagram of the data model, according to which the database
schema of the application is designed.

SSD is based on the use of Structure Charts (SC), which describe the division of the
system to program modules as well as the hierarchy of the different modules and their
interfaces. Certain techniques have been proposed to create SCsfrom DFDs (see Y ourdon
& Constantine, 1979). The main difficulty. of an approach where functional analysis is
followed by structured design liesin the transition from DFDs to SCs. The translation is
problematic because aDFD isanetwork structure, whereasa SCisahierarchical structure.
In spite of various'guidelines and rules for conversion from one structure to the other, the
problem has not beenresolved by those methodologies (Coad & Y ourdon, 1990).

Shoval (1988, 1991) devel oped the ADISSA methodol ogy that solved thisproblem. It
uses hierarchical DFDs during the analysis stage (similar to other functional analysis
methodol ogies), but the design centers on transactions design. A transaction is a process
that supportsauser who performsabusinessfunction, andistriggered asaresult of anevent.
Transactionswill eventually becomethe application programs. Thetransactionsareidenti-
fied and derived from the DFDs. A transaction consists of elementary functions (namely,
functionsthat are not decomposed into sub-functions) that arechainedthrough data flows,
and of data stores and external entities that_are.connected to those functions. Hence, a
transaction consists of at | east one elementary functionand one external entity, which serve
as its trigger. The process logic of each transaction is defined by means of structured
programming techniques:-Based on the hierarchical DFDs and the transactions, ADISSA
methodol ogy provideswel l-defined proceduresto designthe user-systeminterface (amenu-
tree), the inputs and outputs (forms and reports), the database schema, and detailed
transactions descriptions, which are eventually translated into application programs.

The sub-stage of interface design resultsin amenu-tree, that enablesusersto find and
tofire desired transactions. The menu-treeisderived from the hierarchy.of DFDsinasemi-
algorithmicfashion, based onfunctionsthat areconnected to user-entities. Briefly, ageneral
function that is connected to a user-entity produces a menu, at some level, while an
elementary functionthat isconnected to auser-entity producesamenuitemwithinthemenu
created from its super-function.. Obviously;.the hierarchy of menus is equivalent to the
hierarchy of DFDs. Certai n rul esthat takeinto account human-engineering factorsenableus
to modify theinitial menu-tree (which is generated algorithmically). (More details can be
foundinthe ADISSA references, and in Shoval, 1990.)



27 more pages are available in the full version of this
document, which may be purchased using the "Add to Cart"
button on the publisher's webpage: www.igi-
global.com/chapter/foom-functional-object-oriented-
methodology/4322

Related Content

Bioinformatics Data Management and Data Mining

Boris Galitsky (2005). Encyclopedia of Database Technologies and Applications (pp.
29-34).
www.irma-international.org/chapter/bioinformatics-data-management-data-mining/11118

UB2SQL: A Tool for Building Database Applications Using UML and B
Formal Method

Amel Mammarand Régine Laleau (2006). Journal of Database Management (pp. 70-
89).

www.irma-international.org/article/ub2sql-tool-building-database-applications/3363

Simple and Incremental Nearest-Neighbor Search in Spatio-Temporal
Databases

Katerina Raptopoulou, Apostolos N. Papadopoulosand Yannis Manolopoulos (2005).
Spatial Databases: Technologies, Techniques and Trends (pp. 204-224).
www.irma-international.org/chapter/simple-incremental-nearest-neighbor-search/29665

Metaschemas for ER, ORM and UML Data Models: A Comparison
Terry Halpin (2002). Journal of Database Management (pp. 20-30).

www.irma-international.org/article/metaschemas-orm-uml-data-models/3277

ERP Systems Impact on Organizations
Jonas Hedmanand Andreas Borell (2003). ERP & Data Warehousing in
Organizations: Issues and Challenges (pp. 1-21).

www.irma-international.org/chapter/erp-systems-impact-organizations/18552



http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.igi-global.com/chapter/foom-functional-object-oriented-methodology/4322
http://www.irma-international.org/chapter/bioinformatics-data-management-data-mining/11118
http://www.irma-international.org/article/ub2sql-tool-building-database-applications/3363
http://www.irma-international.org/chapter/simple-incremental-nearest-neighbor-search/29665
http://www.irma-international.org/article/metaschemas-orm-uml-data-models/3277
http://www.irma-international.org/chapter/erp-systems-impact-organizations/18552

