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Abstract

As an innovative sparse kernel modeling method, 
support vector regression (SVR) has been regarded 
as the state-of-the-art technique for regression and 
approximation. In the support vector regression, 
Vapnik (2000) developed the ε-insensitive loss 
function as a trade-off between the robust loss 
function of Huber and one that enables sparsity 
within the support vectors. The use of support 
vector kernel expansion provides us a potential 
avenue to represent nonlinear dynamical systems 
and underpin advanced analysis. However, in the 
standard quadratic programming support vector 
regression (QP-SVR), its implementation is more 
computationally expensive and enough model 

sparsity cannot be guaranteed. In an attempt to 
surmount these drawbacks, this chapter focuses 
on the application of soft-constrained linear pro-
gramming support vector regression (LP-SVR) 
in nonlinear black-box systems identification, 
and the simulation results demonstrates that the 
LP-SVR is superior to QP-SVR in model sparsity 
and computational efficiency.

Introduction

Models of dynamical systems are of great impor-
tance in almost all fields of science and engineering 
and specifically in control, signal processing, and 
information science. A model is always only an 
approximation of a real phenomenon so that hav-
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ing an approximation theory which allows for the 
analysis of model quality is a substantial concern. 
A fundamental principle in system modeling is 
the Occam’s razor arguing that the model should 
be no more complex than is required to capture 
the underlying systems dynamics. This concept, 
known as the parsimonious principle, which en-
sures the smallest possible model that explains the 
data, is particularly relevant in nonlinear model 
building because the size of a nonlinear model 
can easily become explosively large.

During the past decade, as an innovative sparse 
kernel modeling technique, support vector ma-
chine (SVM) has been gaining popularity in the 
field of machine learning and has been regarded 
as the state-of-the-art technique for regression and 
classification applications (Cristianini & Shawe-
Taylor, 2000; Schölkopf & Smola, 2002; Vapnik, 
2000). Essentially, SVM is a universal approach 
for solving the problems of multidimensional 
function estimation. Those approaches are all 
based on the Vapnik-Chervonenkis (VC) theory. 
Initially, it was designed to solve pattern recogni-
tion problem, where in order to find a decision 
rule with good generalization capability, a small 
subset of the training data, called the support vec-
tors (SVs), are selected. Experiments showed that 
it is easy to recognize high-dimensional identities 
using a small basis constructed from the selected 
support vectors. Since the inception of this sub-
ject, the idea of support vector learning has also 
been applied to various fields, such as regression, 
density estimation, and linear operator equation, 
successfully. When SVM is employed to tackle the 
problems of function approximation and regres-
sion estimation, the approaches are often referred 
to as the support vector regression (SVR) (Smola 
& Schölkopf, 2004). The SVR type of function 
approximation is very effective, especially for the 
case of having a high-dimensional input space. 
Another important advantage for using SVR in 
function approximation is that the number of free 
parameters in the function approximation scheme 
is equal to the number of support vectors. Such 

a number can be obtained by defining the width 
of a tolerance band, which can be implemented 
by using the ε-insensitive loss function. Thus, the 
selection of the number of free parameters can be 
directly related to the approximation accuracy and 
does not have to depend on the dimensionality of 
the input space or other factors as that in the case 
of multilayer feedforward neural networks.

The ε-insensitive loss function is attractive 
because unlike the quadratic and Huber cost func-
tions, where all the data points will be support 
vectors, the SV solution can be sparse. In the realm 
of data modeling, the sparsity plays a crucial role 
in improving the generalization performance and 
computational efficiency. It has been shown that 
sparse data representations reduce the generaliza-
tion error as long as the representation is not too 
sparse, which is consistent with the principle of 
parsimony (Ancona, Maglietta, & Stella, 2004; 
Chen, 2006).

For the purpose of modeling complex nonlinear 
dynamical systems by sparse representation, SVR 
was used in the context of nonlinear black-box 
system identification very recently (Chan, Chan, 
Cheung, & Harris, 2001; Drezet & Harrison, 1998; 
Gretton, Doucet, Herbrich, Rayner, & Schölkopf, 
2001; Rojo-Alvarez, Martinez-Ramon, Prado-
Cumplido, Artes-Rodriguez, & Figueiras-Vidal, 
2006). Although it is believed that the formulation 
of SVM embodies the structural risk minimization 
principle, thus combining excellent generalization 
properties with a sparse model representation, 
data modeling practicians have begun to real-
ize that the capability for the standard quadratic 
programming SVR (QP-SVR) method to produce 
sparse models has perhaps been overstated. For 
example, it has been shown that the standard 
SVM technique is not always able to construct 
parsimonious models in system identification 
(Drezet & Harrison, 1998). A recent study (Lee & 
Billings, 2002) has compared the standard SVM 
and uniformly regularized orthogonal least squares 
(UROLS) algorithms using time series prediction 
problems, and has found that both methods have 
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