
28 International Journal of Web Portals, 2(4), 28-39, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Computer Software Intensive Systems, Software Architect, Software Architecture, Software
Engineering, Software-Intensive Systems

IntroductIon

The invention of automated machines dates
back to seventeenth century. These automated
machines were run by mechanical and electri-
cal control mechanisms and performed simple
tasks. The advent of electronics based comput-
ing machines increased the potential of these
machines making them complex. The concept of
software has manifested in all forms of comput-
ing machines whether mechanical, electrical or
electronic, being the lifeline thereof.

As the computer systems became more
powerful and smaller in size, their usage diver-
sified from scientific computations to business
systems. It wasn’t long before they were used

the Philosophy of
Software Architecture

Amit Goel, RMIT University, Australia

AbStrAct
Computer Software Intensive systems have become ingrained in our daily life. Apart from obvious scientific
and business applications, various embedded devices are empowered with computer software. Such a diverse
application of Computer Software has led to inherent complexity in building such systems. As civilizations
moved forward, the concept of architectural thinking and practice was introduced to grapple with the complex-
ity and other challenges of creating buildings, skyscrapers, townships, and cities. The Practice of Software
Architecture is an attempt to understand and handle similar challenges in Software Intensive Systems. This
paper introduces software architecture and the underlying philosophy thereof. This paper provokes a discus-
sion around the present and future of Software Architecture. The authors discuss skills and roles of Software
Architect.

to automate various devices such as Phones,
Airplanes and Cruise Control Systems in cars.
Today most of our devices are embedded with
a computer of one kind or another. The diverse
usage, heterogeneous systems and structure of
computers systems lead to further complexity
for software, which has now become the essen-
tial part of any computer system, large or small.

In order to manage complexity, a journey
of abstractions was observed which passed
through machine language (language of 0 and
1), assembly language (language of instruc-
tions and mnemonics such as add, load), high
level languages the (C, C++, Java) and fourth
generation (4GL) or domain specific languages
(DSL). From another viewpoint this complexity
was being addressed by using concepts such
as top-down and bottom-up software develop-
ment approach. The theory of software design DOI: 10.4018/jwp.2010100103

International Journal of Web Portals, 2(4), 28-39, October-December 2010 29

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and design patterns was formed during these
developments. As the complexity increased, the
need was felt to make decisions at much higher
levels of abstraction, and to make strategic deci-
sions before making tactical (as in design) or
operational decisions (as in code). The theory
of Software Architecture started taking shape in
order to manage the complexity at higher levels
of abstraction and to embed strategic decision
making in the building of software systems.

In this paper we explore few fundamental
thoughts on software architecture to provoke
discussion around some basic questions. We
start by discussing the meaning and definition
of the term ‘Software Architecture’ in section
2. We ask “Why do we need to do Software
Architecture?” in section 3 and hence outline the
rationality for doing the software architecture.
Section 4 discusses what skills and qualities
are required by a software engineer engaged
in the practice of software architecture. Section
5 discusses the software architecture metaphor
and how is it similar to or different from art,
engineering and science. This section leads us
to think whether software architecture is an art,
science or engineering or a mix of these. We
conclude by providing a summary and future
direction.

This paper covers few key issues about
philosophy of software architecture in breadth.
Hence the discussion is brief. However, we
point the reader to various references to dive
deeper into details of various concepts presented
in this paper.

the Pursuit of Software
Architecture

Software architecture is a generally overused
term. However, if we ask someone about soft-
ware architecture generally the conversation is
like the one below:

“What is software architecture?”

“The set of decisions an architect makes.”

“What are these decisions?”

“The architecturally significant ones”

“Ok. What is architecturally significant?”

“The architect decides”.

Kent Beck articulated such situation hu-
morously that “Software architecture is what
software architects do and therefore by implica-
tion what software architects do is, well, they
architect software” (Booch, 2006).

Let us first understand the meaning of word
architecture in context of computer software.
Software engineering community has a com-
mon understanding that architecture enables
transformation of requirements to code or
working application. Yet another view is that
architecture is the glue between Business and
IT and closes the Business-IT alignment gap.
Hence software architecture is positioned in
the middle of requirements/code (Figure 1)
or business/IT (Figure 2). We do not deny the
importance of architecture in both these roles,
but mainly software architecture sits in the
middle of strategy and implementation (Figure
3). Strategy is the owner’s vision and implemen-
tation is the execution of strategy. Architecture,
positioned in the middle, is architect’s blueprint
which allows owners to implement or execute
their strategy. Positioning architecture in the
middle of strategy and execution allows it to
scale conceptually from software architecture to
enterprise architecture, and relates architecture
to important aspects discussed in section one,
i.e., strategic decision making and higher levels
of abstraction.

We find many definitions of Software
Architecture in the literature. Let us have a look
at some of them:

• “Software architecture is a set of archi-
tectural (or design) elements that have a
particular form.” (Perry & Wolf, 1992).

• “Software architecture is a collection of
computational components—or simply
components-—together with a descrip-
tion of the interactions between these

10 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/philosophy-software-architecture/49564

Related Content

Introduction
Mark Sheehanand Ali Jafari (2003). Designing Portals: Opportunities and Challenges

(pp. 1-5).

www.irma-international.org/chapter/introduction/8215

University Portals as Gateway or Wall, Narrative, or Database
Stephen Sobol (2007). Encyclopedia of Portal Technologies and Applications (pp.

1045-1049).

www.irma-international.org/chapter/university-portals-gateway-wall-narrative/18006

How to Promote Community Portals
Aki Vainioand Kimmo Salmenjoki (2007). Encyclopedia of Portal Technologies and

Applications (pp. 454-460).

www.irma-international.org/chapter/promote-community-portals/17912

Web Services for Learning in Educational Settings
Brent B. Andresen (2007). Encyclopedia of Portal Technologies and Applications (pp.

1166-1168).

www.irma-international.org/chapter/web-services-learning-educational-settings/18025

A Fuzzy Algorithm for Optimizing Semantic Documental Searches: A Case

Study with Mendeley and IEEExplore
Sara Paiva (2014). International Journal of Web Portals (pp. 50-63).

www.irma-international.org/article/a-fuzzy-algorithm-for-optimizing-semantic-documental-

searches/110887

http://www.igi-global.com/article/philosophy-software-architecture/49564
http://www.igi-global.com/article/philosophy-software-architecture/49564
http://www.irma-international.org/chapter/introduction/8215
http://www.irma-international.org/chapter/university-portals-gateway-wall-narrative/18006
http://www.irma-international.org/chapter/promote-community-portals/17912
http://www.irma-international.org/chapter/web-services-learning-educational-settings/18025
http://www.irma-international.org/article/a-fuzzy-algorithm-for-optimizing-semantic-documental-searches/110887
http://www.irma-international.org/article/a-fuzzy-algorithm-for-optimizing-semantic-documental-searches/110887

