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AbSTRACT

In this chapter, we state an evolution of the Recurrent ANN (RANN) to enforce the persistence of acti-
vations within the neurons to create activation contexts that generate correct outputs through time. In 
this new focus we want to file more information in the neuron’s connections. To do this, the connection’s 
representation goes from the unique values up to a function that generates the neuron’s output. The 
training process to this type of ANN has to calculate the gradient that identifies the function. To train 
this RANN we developed a GA based system that finds the best gradient set to solve each problem.

INTRODUCTION

Due to the limitation of the classical ANN mod-
els (Freeman, 1993) to manage time problems, 
over the year 1985 began the development of 
recurrent models (Pearlmutter, 1990) capable to 
solve efficiently this kind of problems. But this 
situation didn’t change until the arrival of the 
Recurrent Backpropagation algorithm. Before 

this moment, the more wide used RANN were 
Hopfield networks and Boltzman machines that 
weren’t effective to treat dynamic problems. The 
powerful of this new type of RANN is based on 
the increment of the number of connections and 
the whole recursivity of the network. These char-
acteristics, however, increment the complexity of 
the training algorithms and the time to finish the 
convergence process. These problems have slow 
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down the use of the RANN to solve static and 
dynamic problems.

However, the chances of RANN are very big 
compared to the powerful of feedforward ANN. 
For the dynamic or static pattern matching, the 
RANN developed until now offer a better per-
formance and a better learning skill.

Most of the studies that have already been done 
about RANN, have been center in the develop-
ment of new architectures (partial recurrent or 
with context layers, whole recurrent, etc.) and 
to optimize the learning algorithms to achieve 
reasonable computer times. All of these studies 
don’t reflect changes in the architecture of the 
process elements (PE) or artificial neurons, that 
continue having an input function, an activation 
function and an output function.

The PE architecture has been modified, basing 
our study in biological evidences, to increment 
the RANN powerful. These modifications try to 
emulate the biological neuron activation that is 
generated by the action potential. 

The aim of this work is to develop a PE model 
with activation output much more similar to the 
biological neurons one.

bACkGROUND

Artificial Neural Networks 

An Artificial Neural Network (ANN) (Lippmann, 
1987; Haykin, 1999) is an information-processing 
system that is based on generalizations of human 
cognition or neural biology and they are electronic 
or computational models based on the neural 
structure of the brain. The brain basically learns 
from experience. An Artificial Neural Network 
consists on various layers of parallel procesing 
elements or neurons. One or more hidden layers 
may exist between the  input and the output layer. 
The neurons in the hidden layer(s) are connected 
to the neurons of a neighboring layer by weight-
ing factor that can be adjusted during the training 

process. The ANN’s are organized according to 
training methods for specific applications. 

There are two types of ANN’s, the first one 
with only feed forward connections is called feed 
forward ANN, and the second one with arbitrary 
connections without any direction, are often called 
Recurrent ANN (RANN). The most common 
type of ANN consists on different layers, with 
some neurons on each of them and connected 
with feed-forward connections and trained with 
the back propagation algorithm (Johansson et 
al., 1992). 

The numbers of neurons contained in the input 
and output layers are determined by the number 
of input and output variables of a given problem. 
The number of neurons of a hidden layer is an 
important consideration when solving problems 
usign multilayer feed-fordward networks. If there 
are fewer neurons within a hidden layer, there may  
not be enough opportunity for the neural network 
capture the intricate relationships between the 
inputs and the computed output values. Too many 
hidden layer neurons not only require a large 
computational time for accurate training, may 
also result in overtraining situation (Brion et al., 
1999). A neural network is said to be “overtrained” 
when the ANN focuses on the characteristics of 
individual data points rather than just capturing 
the general patterns in the entire training set. 
The optimal number of neurons in a hidden layer 
can be estimated as two-thirds of the sum of the 
number of input and output neurons.  

An ANN has a remarkable ability to derive 
meaning from complicated or imprecise data. 
The ANN can be used to extract patterns and 
detect trends that are too complex to be noticed 
by either humans or other computer techniques. 
“Training” of an ANN model is a procedure by 
which the ANN repeatedly processes a set of 
test data (input-output data pairs), changing the 
values of its weights according to a predetermined 
algorithm in order to improve its performance. 
Backpropagation is the most popular algorithm 
for training feed-forward ANN’s (Lippman, 
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