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AbSTRACT

Drawing inspiration from social interactions in nature, swarm intelligence has presented a promising 
approach to the design of complex systems consisting of numerous, simple parts, to solve a wide variety 
of problems. Swarm intelligence systems involve highly parallel computations across space, based heavily 
on the emergence of global behavior through local interactions of components. This has a disadvantage 
as the desired behavior of a system becomes hard to predict or design. Here we describe how to provide 
greater control over swarm intelligence systems, and potentially more useful goal-oriented behavior, 
by introducing hierarchical controllers in the components. This allows each particle-like controller to 
extend its reactive behavior in a more goal-oriented style, while keeping the locality of the interactions. 
We present three systems designed using this approach: a competitive foraging system, a system for the 
collective transport and distribution of goods, and a self-assembly system capable of creating complex 
3D structures. Our results show that it is possible to guide the self-organization process at different levels 
of the designated task, suggesting that self-organizing behavior may be extensible to support problem 
solving in various contexts.
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INTRODUCTION

The term swarm intelligence, initially introduced 
by Beni, 1988 in the context of cellular robotics, 
refers to a collection of techniques inspired in part 
by the behavior of social insects, such as ants, bees, 
termites, etc., and of aggregations of animals, such 
as flocks, herds, schools, and even human groups 
and economic models (Bonabeau, 1999; Kennedy, 
2001). These swarms possess the ability to present 
remarkably complex and “intelligent” behavior, 
despite the apparent lack of relative complexity in 
the individuals that form them. These behaviors 
can include cooperative synchronized hunting, 
coordinated raiding, migration, foraging, path 
finding, bridge construction, allocation of labor, 
and nest construction.  Past discoveries (Deneu-
bourg, 1989) have led investigators to the belief 
that such behaviors, although in part produced 
by the genetic and physiological structure of 
the individuals, are largely caused by the self-
organization of the systems they form (Aron, 
1990; Bonabeau, 1996). In other words, out of the 
direct or indirect local interactions between the 
individuals, the collective behavior emerges in a 
way that may have the appearance of being glob-
ally organized, although no centralized control or 
global communication actually exists. It is pre-
cisely this self-organization that artificial swarm 
intelligence systems try to achieve, by infusing 
the components, homogeneous or heterogeneous, 
of a system with simple rules. Swarm intelligence 
presents a novel and promising paradigm for 
the design and engineering of complex systems, 
increasingly found in many fields of engineering 
and science, where the number of elements and 
the nature of the interactions among them make it 
considerably difficult to model or understand the 
system’s behavior by traditional methods. 

Several methodological approaches to swarm 
intelligence have been explored, but they often 
share a common feature: collections of simple 
entities (simulated birds, ants, vehicles, etc.) move 
autonomously through space, controlled by forces 

or interactions exerted locally upon each other, 
either directly or through the environment. These 
local interactions are often governed in a simple 
manner, via small sets of rules or short equations, 
and in some cases the sets of reactive agents used 
are best characterized as particle systems where 
each agent is viewed as a particle. This provides 
swarming systems with a sets of properties that 
includes scalability, fault tolerance, and perhaps 
more importantly, self-organization. Through 
this latter property, there is no need for a system 
to be controlled in a hierarchical fashion by one 
or more central components that determine the 
required behavior of the system. Instead, collective 
behavior emerges from the local interactions of all 
the components, and the global system behaves as 
a super-organism of loosely connected parts that 
react “intelligently” to the environment. 

In our view, the self-organizing feature of 
swarm systems represents its main advantage and 
also its main disadvantage: the resulting global 
behavior is often hard to predict based solely on 
the local rules, and in some cases it can be hard 
to control the system, that is, to obtain a desired 
behavior by imposing local rules on its compo-
nents. This not only can require prolonged, trial-
and-error style tweaking and fine tuning, but even 
limits the kinds of problems that can be tackled 
by these essentially reactive systems.

In our ongoing research in swarm intelligence 
(Grushin, 2006; Lapizco, 2005; Rodriguez, 2004; 
Winder, 2004), we have proposed, and shown to 
be partially successful, an approach to overcome 
these limitations: the introduction of layered con-
trollers into the previously purely reactive particles 
or components of a system. The layered controllers 
allow each particle to extend its reactive behavior 
in a more goal-oriented style, switching between 
alternative behaviors in different contexts, while 
retaining the locality of the interactions and the 
general simplicity of the system. In this way, by 
providing a larger, more complex set of behaviors 
for the particles and finer control over them, the 
resulting system remains self-organizing, but a 
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