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Dispersion Coefficient in Rivers
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AbSTRACT

In this chapter a novel method, the Genetic Neural Mathematical Method (GNMM), for the prediction 
of longitudinal dispersion coefficient is presented. This hybrid method utilizes Genetic Algorithms (GAs) 
to identify variables that are being input into a Multi-Layer Perceptron (MLP) Artificial Neural Network 
(ANN), which simplifies the neural network structure and makes the training process more efficient. 
Once input variables are determined, GNMM processes the data using an MLP with the back-propaga-
tion algorithm. The MLP is presented with a series of training examples and the internal weights are 
adjusted in an attempt to model the input/output relationship. GNMM is able to extract regression rules 
from the trained neural network. The effectiveness of GNMM is demonstrated by means of case study 
data, which has previously been explored by other authors using various methods. By comparing the 
results generated by GNMM to those presented in the literature, the effectiveness of this methodology 
is demonstrated.
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A Genetic Algorithm-Artificial Neural Network Method

INTRODUCTION

An important application of environmental hy-
draulics is the prediction of the fate and transport 
of pollutants that are released into watercourses, 
either as a result of accidents or as regulated dis-
charges. Such predictions are primarily dependent 
on the water velocity, longitudinal mixing, and 
chemical/physical reactions etc, of which longi-
tudinal dispersion coefficient is a key variable 
for the description of the longitudinal spreading 
in a river.

The concept of longitudinal dispersion coef-
ficient was first introduced in Taylor (1954). Based 
on this work, the following integral expression 
was developed (Fischer, List, Koh, Imberger, & 
Brooks, 1979; Seo & Cheong, 1998) and gener-
ally accepted:

      (1)

where K = longitudinal dispersion coefficient; 
A = cross-sectional area; B = channel width; h 
= local flow depth; u’ = deviation of local depth 
mean flow velocity from cross-sectional mean; y 
= coordinate in the lateral direction; and εt = local 
(depth averaged) transverse mixing coefficient. An 
alternative approach utilises field tracer measure-
ments and applies the method of moments. It is 
also well documented in the literature (Guymer, 
1999; Rowinski, Piotrowski, & Napiorkowski, 
2005; Rutherford, 1994) and defines K as

  (2)

where Uc = mean velocity, x1 and x2 denotes up-
stream and downstream measurement sites,  = 
centroid travel time, σt

2(x) = temporal variance, 

However, owing to the requirement for de-
tailed transverse profiles of both velocity and 
cross-sectional geometry, equation (1) is rather 
difficult to use. Furthermore, equation (2), called 
the method of moments (Wallis & Manson, 2004), 
requires measurements of concentration distribu-
tions and can be subject to serious errors due to 
the difficulty of evaluating the variances of the 
distributions caused by elongated and/or poorly 
defined tails. As a result, extensive studies have 
been made based on experimental and field data 
for predicting the dispersion coefficient (Deng, 
Singh, & Bengtsson, 2001; Jobson, 1997; Seo & 
Cheong, 1998; Wallis & Manson, 2004).

For example, employing 59 hydraulic and 
geometric data sets measured in 26 rivers in the 
United States, Seo and Cheong (1998) used di-
mensional analysis and applied the one-step Huber 
method, a nonlinear multi-regression method, to 
derive the following equation:

      (3)

in which u* = shear velocity. This technique uses 
the easily measureable hydraulic variables of B, H 
and U, together with a frequently used parameter, 
extremely difficult to accurately quantify in field 
applications, u*, to estimate the dimensionless 
dispersion coefficient K from equation (3). An-
other empirical equation developed by Deng et 
al. (2001) is a more theoretically based approxi-
mation of equation (1), which not only includes 
the conventional parameters of (B/H) and (U/u*) 
but also the effects of the transverse mixing εt0, 
as follows:

      (4)

where
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