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Appendix A:
Principal Component Analysis

Principal Component Analysis (PCA) is almost equivalent to Singular Value De-
composition (SVA), or Karhunen-Loeve expansion. It will be presented first as an 
important computational method for feature extraction from input-data (Ritter, 
Martinetz & Schulten, 1992; Haken, 1996; AuxLit 10). To perform PCA, input-
patterns x k  are decomposed into a series, i.e. a linear combination of prototype-
patterns wr (r = 1, ..., p’):
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   are the principal components of the input-patterns. Their number is 

¢p .  Variable cr could also be treated as the activity-rate of corresponding dominant 
or cardinal neuron r .  Index r corresponds to location of a cardinal neuron r .  At 
the beginning, all principal components cr are approximately equal and lower than 
1. Then we can talk about potentially-cardinal neurons. Later environmental 
stimulus gives privilege to one pattern and its cr increases towards 1 (wins). This 
means that one neuron becomes actually-cardinal, other neurons get subordinated. 
We are able to store all inputs x k  completely (so, there is no need for data compres-
sion) if p = ¢p . In this “ideal” case index k and index r are equivalent. If, on the 
other hand, there is p > ¢p ,  data-compression causes that a higher number (p) of 
inputs x k  is represented by a lower number ( ¢p ) of cardinal neurons cr or/and their 
set of synapses wr  (or wr ,  respectively). cr -representation is a relatively sparse 
code; wr  is a relatively distributed code.



w 0  specifies the center of weight of the input data distribution P ( x k ) ( w 0  are 
very often represented by mean values – e.g., as in: Bankman in Pribram, 1993, p. 
77). Other ¢p  prototype-vectors wr  form a so-called eigen-space basis. These 
basis-vectors, which are typically mutually orthogonal, coincide with (relatively 
pictorial) memory representations, i.e. so-called eigen-images. In fact, these ¢p  
vectors are eigen-vectors of the autocorrelation- matrix C that have the largest 
eigen-values (Ritter et al., 1992):1

C = − ⊗ −
=
∑ ( ) ( ) ( ).
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T denotes the transposed vector (i.e., line vector); ⨂ denotes the outer or tensor 
product: ( 



a bÄ )ij = aibj. C is an (auto) correlation matrix of the difference-vector 
 

x wk k- ,  therefore it is a covariance matrix. Typically, mutually orthogonal basis-
vectors capture the directions of maximal variance (dispersion) of the data.

Equation (12.1) defines a hyper-plane which passes through the center of weight 


w 0 and is spanned by principal axes along all wr .




R x k( )  is a residual vector which 
represents a non- vanishing distance from the approximating hyper-plane perpen-
dicular to it. If 





R x k( )  would be zero, our approximation with principal eigenvectors 


wr  (prototypes) or, equivalently, with principal components cr (cardinal neurons 
corresponding to prototypes) would be perfect.
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