
33333Summer 1994

Journal of Database Management

Manuscript originally submitted August 16, 1993; Revised March 14, 1994; Accepted May 4, 1994 for publication.

This paper develops a detailed set of criteria
with which the functional capabilities of different Infor-
mation Resource Dictionary System (IRDS) products
can be compared. The proposed criteria are primarily
based on the ANSI and ISO standards for IRDS and
related published literature in the field. The criteria set
can be used as a guideline by vendors to streamline their
products, or as a framework by potential adopters to
compare and select an IRDS from multiple offerings.

In recent years, it has come to be recognized and
accepted that data is as valuable a corporate resource as
any other corporate resource such as money, material, or
personnel, and that, like these resources, data must also
be administered and controlled to ensure proper han-
dling, proper access and proper utilization.

Data administration is the function that assists
the organization in the management and control of data.
It includes a human facility, the data administrator, and
an automated facility called the Information Resource
Dictionary System (IRDS), some common implementa-
tions of which are known as the Data Dictionary/Direc-
tory System, the Repository, or the Encyclopedia (Cashin,
1988). The data administrator acts as a manager of the
corporate data resource. The IRDS incorporates a cen-
tralized “repository” of information about data relevant

to the organization. The repository is an administrative
data base that allows storage and management of all the
database and related information system definitions,
referred to as metadata. It contains the attributes,
domains, definitions, usage and relationships of the data
in an organization. The major benefits of a central
repository include:

Establishing a single source of metadata to be
shared and reused by various users and tools
throughout the lifecycle of an application or
information system

Reducing or eliminating duplication of effort in
creating and managing shared data

Promoting and enforcing consistent definitions
across interrelated application areas

The concept of storing data about an
organization’s data and its information systems origi-
nated over three decades ago, with the use of COBOL
copy statements to provide consistent data declarations
that could be referenced by applications (Gillenson,
1993). This was followed by a succession of products,
such as of data dictionaries, and catalogs for relational
DBMS. As a result of a proliferation of work in this area,

A Functionality-Oriented Criteria SetA Functionality-Oriented Criteria SetA Functionality-Oriented Criteria SetA Functionality-Oriented Criteria SetA Functionality-Oriented Criteria Set
for Evaluating Information Resourcefor Evaluating Information Resourcefor Evaluating Information Resourcefor Evaluating Information Resourcefor Evaluating Information Resource

Dictionary SystemsDictionary SystemsDictionary SystemsDictionary SystemsDictionary Systems
Bijoy Bordoloi, Sumit Sircar, Craig Slinkman

University of Texas at Arlington

Nitant Chakranarayan
Database Consultants, Inc.

44444 Vol. 5, No. 3

Journal of Database Management

both the American National Standards Institute (ANSI)
and what is now the National Institute of Standards and
Technology (NIST) began to work on data dictionary
standards in the early 1980s. They named the software
“Information Resource Dictionary Systems,” and for-
mulated a set of standards (X3.138) in 1988 (ANSI,
1989). These standards were recently extended in 1992
(ANSI, 1992).

Because of its growing importance, IRDS imple-
mentation has been a major software endeavor for many
software companies, large and small. For instance, IBM
has announced a product called Repository for DB2, its
relational DBMS. Furthermore, the concept of a reposi-
tory has been most successfully implemented in ICASE
(Integrated Computer Assisted Software/System Engi-
neering) technology. In fact, the repository or encyclo-
pedia is the cornerstone of all the well-known ICASE
packages on the market. Some examples are: ORACLE
corporation’s CASE*Dictionary; Texas Instruments’ IEF
(Integrated Engineering Facility), and Knowledgeware’s
ADW (Application Development Workbench).

Several third party vendors have also introduced
their repository products, and this market seems to be
constantly expanding. The problem, however, is that
there is a dearth, in the published literature, of a well-
defined set of criteria to evaluate the functional capabili-
ties of these products. This, needless to say, makes it
extremely difficult for IS management to evaluate and
select an IRDS product. This is the problem that we
address in this paper as we develop a set of criteria with
which the functional capabilities of IRDS products can
be compared.

Several authors (Bruce, Fuller, & Moriarty, 1989;
Narayan, 1988; Plotkin, 1992) have suggested criteria to
select an IRDS, but they lean towards the business
decision-making aspect of choosing an IRDS for an
organization. Their criteria, for example, include mar-
keting-oriented features such as vendor support and
vendor reputation. The criteria of these authors do not
focus in detail on the functional power of the IRDS and
the overall functionality of the IRDS. Building on the
works of these authors, we present a more detailed set of
functionality-oriented criteriafunctionality-oriented criteriafunctionality-oriented criteriafunctionality-oriented criteriafunctionality-oriented criteria with which the capabili-
ties of IRDSs can be compared (ignoring business
related criteria such as cost, vendor reputation or vendor
support).

Our proposed criteria are based on published
literature in the area of IRDS, the ANSI and ISO stan-
dards proposed for IRDSs (primarily ANSI), and inputs

from several practitioners in the field. We assume that
the reader is familiar with the basic concepts and termi-
nology of database management, particularly the con-
cepts of database schema, metadata, the E/R model and
the relational data model.

The rest of the paper is organized as follows.
First we provide a summary discussion of some basic
IRDS concepts and IRDS database architecture. The
discussion presented in this section forms the basis for
our proposed criteria which we discuss in the next
section. We then provide some methodological guide-
lines for using the proposed criteria set, followed by
concluding remarks.

IRDS Concepts and Database ArchitectureIRDS Concepts and Database ArchitectureIRDS Concepts and Database ArchitectureIRDS Concepts and Database ArchitectureIRDS Concepts and Database Architecture

Before we discuss the architecture and desirable
functional features of IRDS, it is perhaps useful to
review some basic IRDS concepts and the evolution of
IRDSs from simple manual systems to complex auto-
mated ones.

Evolution of IRDSEvolution of IRDSEvolution of IRDSEvolution of IRDSEvolution of IRDS
In the early days of computing, data were stored

in the form of small isolated islands, and were controlled
by independent programs, so programmers and system
developers needed a reference list for the names and
definitions of the variables used in their programs. The
need for sharing data amongst different applications was
apparent even then. It was necessary to keep track of the
data, their meaning and the relationship between the data
and programs. Gillenson and Frost ([Gillenson & Frost,
1993) have traced the evolution of the concept of storing
and using data about data, i.e. metadata. They found the
following overlapping stages in the development of this
concept: passive data dictionary, active data dictionary,
relational catalog, hybrid relational data dictionary,
American National Standards Institute (ANSI) Informa-
tion Resource Dictionary System (IRDS), repository,
and OODBMS catalog.

Passive data dictionaries were the earliest form
of data dictionary. They are called passive, because they
are used independently of the running of the DBMS,
typically as system documentation tools. Well-known
examples of such products for specific DBMS are Uni-
versity Computing’s UCC TEN, IBM’s DB/DC and
Cincom’s Data Dictionary. Active data dictionaries
represented an enhancement of the data dictionary con-
cept. They are called “active” because the metadata they

55555Summer 1994

Journal of Database Management

contain are needed for the execution-time environment
of a DBMS. An example of a product in this category
is the Integrated Data Dictionary (IDD) of Computer
Associates’ IDMS/R DBMS.

The next stage is the relational catalog. This
catalog was necessitated because of the unique require-
ments of relational DBMSs. The latter do not possess the
direct address pointers of previous types of DBMSs, so
sophisticated query optimizers had to be developed to
determine the most efficient manner in which to provide
data in response to a query. The relational catalog (a set
of relational tables) was created to store lower-level
operational data about the relational DBMS environ-
ment, typically including descriptions of databases, tables,
views, field types, foreign keys and indexes. Products in
this category are included for example, in IBM’s DB2
and SQL/DS relational DBMSs, and the ORACLE and
INGRES relational DBMSs. A logical extension of the
concept, adopted by several organizations that were
early consumers of relational DBMSs, was the formula-
tion of the data dictionary as a full-blown relational
database application. An example of a vendor offering
of this type is IBM’s Data Base Relational Application
Directory (DBRAD), introduced in 1986.

Occurring parallel with these elements, from the
early 1980s, has been a continuing effort by the ANSI
and the ISO to formulate a set of standards for data
dictionaries. The fruits of their endeavors are described
in the next section as they are central to the objectives for
this paper. The standards approved by the ANSI’s
X3.138 (ANSI, 1989) and ISO’s SC21 standards (ISO,
1989) in the late 1980’s were necessary because over the
years the term IRDS had come to mean different things
to different audiences, and there were no common rules
to guide developers. Consequently, the result was in-
compatibility among IRDS implementations, and severe
limitations on the portability of IRDS applications.

The next stage in the evolution of data dictionar-
ies was driven by the needs of the Computer Assisted
Software Engineering (CASE) approach to application
development. This approach embodied more compre-
hensive, automated support for the complete informa-
tion environment within an organization, with support
for the operational aspects of that environment and
storage of the relationships and locations of all the
information environment components (Appleton, 1987).
There is obviously a substantial overlap between the
functions of the metadata for traditional data dictionaries
and those supporting CASE environments, which have

come to be known as “repositories”. We therefore use
the terms IRDS and repository interchangeably in this
paper. Products in this category include Brownstone
Solutions’ Data Dictionary/Solution (DD/S), introduced
in 1986, Reltech Products’ DB EXCEL Repository, and
IBM’s Repository Manager/MVS, first marketed in 1990.

Finally, the emergence of OODBMSs has led to
the last of the seven stages in the evolution of data
dictionaries—the OODBMS catalog. This is similar to
the relational catalog, but designed for the functional
requirements for metadata storage in an OODBMS envi-
ronment. OODBMSs are capable of handling complex
data structures, so the corresponding catalog must be
capable of supporting queries involving these complex
objects.

 IRDS Database Architecture IRDS Database Architecture IRDS Database Architecture IRDS Database Architecture IRDS Database Architecture
As indicated in the previous section, an IRDS is

a database application that manages a centralized col-
lection of data about all the relevant information re-
sources within an organization. An IRDS is composed
of a database component, the Information Resource
Dictionary (IRD), and other components such as a query
facility, and a report facility. The IRDS database (i.e., the
IRD) is the heartheartheartheartheart of an IRDS. The IRD contains
information about entities, data elements and their at-
tributes such as size, type, where and how they are used
and their relationships with other entities or elements.
This information is represented in the form of meta-
entities such as tables, records or elements. This
metadata should not be confused with user data, as meta-
data are used to identify, declare, and describe the
characteristics of user data (Dolk, 1987; March &
Kim,1988-89; Van Duyn, 1982).

The ANSI IRDS is a multidimensional model,
which gives a view of the data ranging from extremely
conceptual to actual physical storage. It is based mainly
on the Entity-Relationship (E-R) model, which specifies
information in terms of entities, attributes and relation-
ships.

The ANSI IRDS Database can be viewed as a
four-level architecture in which the information speci-
fied at one level describes (and potentially controls) the
information stored at the next lower level. Thus, one
level defines the types of “objects” which can be de-
scribed at the next lower level, and that level contains the
“instances” of those types. As illustrated in Figure 1,
these four levels are:

66666 Vol. 5, No. 3

Journal of Database Management

meta-data relationship-type such as “record-contains-
field”. All relationships of a given type involve the same
types of entities and attributes, and they are binary in
nature. An occurrence of an attribute-type describes a
particular attribute type such as “length” or “date-cre-
ated”. A meta-relationship is a directed association
between two meta-entities such as “relationship-type-
contains-attribute-type”. An occurrence of attribute-
group-type describes a collection of related attribute
types which are sometimes grouped together mainly for
descriptive purposes.

The second level from the top is referred to as the
Information Resource Dictionary (IRD) Schema. This
level defines the types to be instantiated in the next lower
level, the IRD. The IRD Schema describes the structure
and contents of the IRD. It also defines various control
mechanisms, including naming rules, defaults, and vali-
dation information for the IRD contents. Thus, for every
entity, relationship, attribute, and attribute-group that
occurs in the IRD, the IRD Schema will contain a
description of the corresponding entity-types, relation-
ship-types, attribute-types, and attribute-group-types.

The ANSI standard specifies a “Minimal IRD
Schema” consisting of those “meta-entities”, “meta-
relationships”, and “meta-attributes” necessary to estab-
lish controls over the IRD Schema and the IRD. This set
includes entity-types such as “document”, “file”, and
“record”, attribute-types such as “length” and “number-
of-records”, and relationship-types such as “contains”,
“processes” and “responsible-for”.

This “minimal” Schema can be used by organi-
zations to describe most systems, but the IRDS also
includes an Extensibility Facility that allows an installa-
tion to customize the IRD Schema to be responsive to its
own requirements. This means that the installation can
add those entity-types, relationship-types or attribute-
types that will allow it to use the IRD as a repository for
data that is of interest to that installation. This feature
enhances the power and flexibility of the IRDS as an
effective tool for managing metadata. It provides a three-
dimensional enhancement to the IRDS, because the user
can add new entities, enhance the description of an
existing entity with new attributes, and establish new
relationships between new and existing entities, be-
tween existing entities or between new entities (Allen,
Loomis & Mannino, 1982). It should, however, be noted
that an installation is generally not allowed to modify the
Minimal IRD Schema (some modification is sometimes
permitted). For this reason, the Minimal IRD Schema is

Figure 1: The Four-Level Architecture of the IRDSFigure 1: The Four-Level Architecture of the IRDSFigure 1: The Four-Level Architecture of the IRDSFigure 1: The Four-Level Architecture of the IRDSFigure 1: The Four-Level Architecture of the IRDS
Database Database Database Database Database (Source: American National Standard X3.138-1988)

1) IRD Schema Definition Level
2) IRD Schema Level
3) IRD Level
4) “Real World” Information Resources (or Production

Data)

As shown in Figure 1, the IRD Schema Defini-
tion level, the top level of the four-level architecture, is
defined by the IRDS implementor. This level contains
the types of objects which can be defined at the next
lower level, the IRD Schema, the types of the relation-
ships which can exist between these types, and certain
properties of both of these types. These types are
referred to as “meta-entity-types”, “meta-relationship-
types” and “meta-attribute-types.” The prefix “meta” as
seen from the previous section signifies a concept of data
about data.

For example, meta-entities can be entity-types,
relationship-types, or attribute-types. An occurrence of
an entity-type describes a particular meta-data type such
as “record”. All entities of a given type will have the
same types of attributes and relationship types. An
occurrence of a relationship-type describes a particular

Defined By IRD Schema
IRDS Implementor Definition

 Describes & Controls

Defined By IRD Schema
IRDS Standard

Describes & Controls

Defined By IRD
IRDS Standard
and
IRDS Administrator

Describes

Defined By “Real World”
Data Processing Information
Organization Resources

>
>

>

77777Summer 1994

Journal of Database Management

also often referred to as the Core Standard Schema.
The third level is the IRD. This level describes

the environment being modeled. It describes the objects
in the environment and the associations among those
objects; the object descriptions are called entities, and
the association descriptions are called relationships.
This level also describes the properties of the objects
called attributes and their associations. Thus the IRD
layer describes the actual entities, relationships and
attributes of a real-world database application, such as
the “employee-record” or “social-security-number”.

The fourth level, which is not described in the
current ANSI standard, is the information resource envi-
ronment; i.e., the “real world information resources”,
descriptions of which exist in the IRD. This production
data layer deals with end-user data and is not a functional
part of the IRDS. It is a conceptual storage area contain-
ing actual instances of data, such as an occurrence of the
entity “customer”, identified by “John Doe”.

Thus, the IRD Schema Definition layer, the IRD
Schema layer and the IRD layer are the three functional
parts of the IRDS. The IRD layer contains the IRD data
such as “payroll-record”, which is an instance of the
entity-type “record” in the Schema layer, which in turn,
is an instance of the meta-entity “entity-type”at the
Schema definition layer.

The ISO model, although using different termi-
nology, is quite similar to the ANSI model, as it is based
on the evolving ANSI model. The ISO model is also a
four-layered model just like the ANSI model, and the
definitions of the layers are also essentially the same
(ISO, 1989; Protocols standards and Communications
Inc., 1989). The ISO model, however, contains some
data modeling features which may be viewed as en-
hancements to the ANSI model. The major differences,
which bear relevance to our proposed criteria, are dis-
cussed below.

One major difference is in the area of modeling
constraints. For example, consider two entity-types table
and row, and a relationship type, contains. Therefore, to
represent “table-contains-row”, the model needs a way
to specify values associated with objects, and on associa-
tions between objects, also known as cardinality. The
ANSI model does not support this concept, nor does it
offer a means to specify mandatory or required at-
tributes. Therefore, all relationships have to be defined
as either one-to-one or one-to-many, as there is no direct
representation for many-to-many relationships. The ISO
model supports both cardinality and a means to specify

mandatory and optional attributes.
A second major difference is in the area of

degree of relationships. The ISO model permits N-ary
relationships, but the ANSI model allows for only binary
relationships. Thus, in the case of a ternary relationship,
the ANSI model forces the user to reclassify the third
relationship as an artificial entity and relate it through
binary relationships with the other two entities. This
confuses the semantics of the true world model and
creates unnecessary entities and relationships. Further,
in general, the information represented by a ternary
relationship is not necessarily equivalent to a combina-
tion of three binary relationships. If forced to do so, it
may result in what is known as the ‘connection trap’ or
the violation of fifth normal form (Date, 1990). It may,
however, be noted that recently both ANSI and ISO have
decided to put aside their differences and plan to work
toward a uniform set of standards, which should offer a
new vision to the world of IRDS (Jones, 1992).

Vendor Implementations of IRDSsVendor Implementations of IRDSsVendor Implementations of IRDSsVendor Implementations of IRDSsVendor Implementations of IRDSs
As stated previously, IRDSs can be passivepassivepassivepassivepassive or

activeactiveactiveactiveactive, depending upon the extent of the integration of an
IRDS with the host DBMS (Leon-Hong and Plagman,
1982; Meador, 1987; Narayan, 1988; Ross, 1981;
Venkatakrishnan, 1988; Weldon, 1985). Almost all
modern IRDSs, however, are of the active type and
integrated with CASE tools and/or the host DBMS.
There are two types of active IRDSs: Active in develop-
ment and Active in production, each of which is de-
scribed below.

Active in developmentActive in developmentActive in developmentActive in developmentActive in development::::: In this mode the IRDS is
used by users as a documentation tool and by automated
development tools, such as CASE tools, during the
application development process. Therefore, an analyst
can store his E-R diagram in this type of IRDS, but the
IRDS does not actively support application programs in
the production environment.

Active in productionActive in productionActive in productionActive in productionActive in production::::: In this mode, the IRDS is
integrated into the DBMS to the extent that the DBMS
uses the definitions from the IRDS at run time. There-
fore, in an active in production IRDS, every request for
data is addressed to the IRDS, which has control over
how the data are cataloged, where they are located and
who has access to them. The IRDS, then directs the
DBMS to obtain the data item and apply any operations
on the item before presenting it to the user. These IRDSs
tend to suffer performance problems because of the
amount of activity that has to be coordinated through the

88888 Vol. 5, No. 3

Journal of Database Management

dictionary at run time.
However, active in production IRDS is desir-

able for several reasons. First, it minimizes data redun-
dancy because a data element is defined only once.
Second, it provides data integrity because the IRDS
contains the most current data, and thus is a very valuable
reference and cross-reference tool for users. Third, it
enforces uniform standards and security controls through-
out the system. Finally, it helps to control the costs of
developing and maintaining applications because of the
accurate and complete data definitions from the IRDS.

IRDS Evaluation CriteriaIRDS Evaluation CriteriaIRDS Evaluation CriteriaIRDS Evaluation CriteriaIRDS Evaluation Criteria

The IRDS database architecture discussed pre-
viously provides the basis for formulating a set of “core”
criteria by which to evaluate IRDS offerrings. However,
in actual organizational usage, commercial IRDS imple-
mentations would have to possess many more features
and capabilities than those covered by the architectural
standards. An additional set of criteria are needed to
evaluate these features. As shown in Fig. 2, we propose
nine “broad” criteria—three for the core, and six for the
additional set. These nine criteria are then expanded to
thirty-one sub-criteria to provide a detailed framework
for evaluation and comparison as shown in Figure 3. The
development of the core criteria and the additional
criteria set are discussed below.

Figure 2: Broad CriteriaFigure 2: Broad CriteriaFigure 2: Broad CriteriaFigure 2: Broad CriteriaFigure 2: Broad Criteria

Core CriteriaCore CriteriaCore CriteriaCore CriteriaCore Criteria

 1. Ability to Capture Core Entity Structure.
 2. Ability to Capture Core Attribute Structure.
 3. Ability to Capture Core Entity-Relationship
 Properties.

 Additional Criteria Additional Criteria Additional Criteria Additional Criteria Additional Criteria

 4. Extensibility Support.
 5. Data Documentation and Versioning Support.
 6. Security Support.
 7. Integrity Support.
 8. Input/Output Interface.
 9. User-Friendliness.

1. Ability to Capture Core Entity Structure.
 Ability to Capture Data Entities.
 Ability to Capture System Entities.
 Ability to Capture External Entities.
2. Ability to Capture Core Attribute Structure.
 Ability to Capture Identification Attributes.
 Ability to Capture Representation Attributes.
 Ability to Capture Statistical Attributes.
 Ability to Capture Control Attributes.
 Ability to Capture Physical Attributes.
3. Ability to Capture Core Entity-Relationship Properties.
 Ability to Name Relationship.
 Ability to Represent Maximum Cardinality.
 Ability to Represent Mandatory/Optional Relationships.
 Ability to Represent Generalization (IS-A)
 Relationships.
 Ability to Represent Mutually Exclusive Relation-
ships.
 Ability to Represent N-ary Relationships.
 Ability to Represent Recursive Relationships.
4. Extensibility Support.
 Ability to Add/Update/Delete Entity-types
 Ability to Add/Update/Delete Attribute-types.
 Ability to Add/Update/Delete Relationship-types.
5. Data Documentation and Versioning Support.
 Ability to Capture current Attribute Descriptions.
 Ability to Maintain Standard Control.
 Ability to Maintain Version Control.
6. Security Support.
 Ability to Control Access through Username/Pass-
word.
 Ability to Coordinate Access through DBMS.
7. Integrity Support.
 Provision of Edit and Validation functions.
 Provision of Error Reporting functions.
 Provision of Data Recovery functions.
8. Input/Output Interface.
 Query Language Support.
 Command Language Support.
 Predefined Standard Reports.
9. Use-Friendliness.
 Ability to Provide Help and Pop-up Screens.
 Ease of Learning and Using the Product.

Figure 3: Detailed Criteria SetFigure 3: Detailed Criteria SetFigure 3: Detailed Criteria SetFigure 3: Detailed Criteria SetFigure 3: Detailed Criteria Set

Core CriteriaCore CriteriaCore CriteriaCore CriteriaCore Criteria
For lack of any other appropriate term, we call

the first three of the nine broad criteria “core” criteria.
These criteria consisting of 15 sub-criteria reflect the
desirable characteristics of the IRDS databasedatabasedatabasedatabasedatabase (i.e., the
IRD—the heart of an IRDS). Most of the sub-criteria
within these broad criteria are based on the ANSI Core
Standard Schema -discussed earlier. As implied by the
ANSI standards, an IRDS meeting these fundamental
criteria should be able to be used by an organization to
describe most of its RDBMS applications. Thus, all

99999Summer 1994

Journal of Database Management

IRDSs must possess some functional capabilities along
each of these core criteria, discussed below.

Ability to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity Structure. A
fundamental characteristic of IRDSs is the breadth (en-
tity-types) of metadata that can be described to the IRDS
(Modell, 1988). This criterion refers to the ability to
capture the descriptions of all the entity-types specified
in the Core System-Standard Schema. This helps to
evaluate the metadata entity structure of the IRDS. The
Core System-Standard Schema as per the ANSI archi-
tecture contains 15 entity-types that can be conceptually
grouped into three categories: Data, System, and Exter-
nal.

Data entity-typesData entity-typesData entity-typesData entity-typesData entity-types::::: These entity-types are used
to represent objects which are units or aggregates of data.
An IRDS should support the following data entity-types:

1) DatabaseDatabaseDatabaseDatabaseDatabase. It is a collection of DBMS tables, rows,
columns, elements, reports, forms, and views, which
together act as a storage area for the organization’s
data.

2) Table (File)Table (File)Table (File)Table (File)Table (File). It is a set of related occurrences of rows,
columns, and elements usually of the same type, such
as “customer” or “employee”.

3) Row (Record)Row (Record)Row (Record)Row (Record)Row (Record). It is an aggregation of one or more
related elements or columns that is treated as a unit,
such as the employee record made up of name, social
security number, age, and address.

4) ElementElementElementElementElement. It is the most basic and elementary discrete
unit of data that can be identified and described in an
IRDS.

5) FormFormFormFormForm. It is a screen in which data are both displayed
and entered, such as the “order entry” screen.

6) ReportReportReportReportReport. It is the data extracted from the database,
which may be printed or displayed on the screen in a
formatted manner.

7) ViewViewViewViewView. It is a virtual table, not physically stored in the
database, but derived from one or more tables.

8) KeyKeyKeyKeyKey. It is a group of one or more columns that uniquely
identify a row.

9) DomainDomainDomainDomainDomain. It is a set of all possible values that a column
in a database table can have.

10)IndexIndexIndexIndexIndex. It places the database table data in a desired
logical sequence regardless of its physical storage
sequence, thereby reducing data access time.

System entity-types:System entity-types:System entity-types:System entity-types:System entity-types: These entity-types are used
to describe or represent objects that are processes or
components of the system. An IRDS should support the
following system entity-types:

1) ProgramProgramProgramProgramProgram. It a set of instructional statements that
specify actions in a particular programming language.

2) ModuleModuleModuleModuleModule. It is a subset of statements of a program,
which perform a specific task within a program.

3) SystemSystemSystemSystemSystem. It is a collection of related programs, modules
or other systems that perform a complete set of func-
tions.

External entity-typesExternal entity-typesExternal entity-typesExternal entity-typesExternal entity-types::::: These entity-types are
used to describe objects that are connected with the
physical external environment in a system. An IRDS
should support the following external entity-types:

1) UserUserUserUserUser. It represents a person, department or functional
group that can be identified to the IRDS in terms of its
responsibility and authority.

2) Hardware DeviceHardware DeviceHardware DeviceHardware DeviceHardware Device. It is used to describe physical
devices such as CRTs, terminals, printers or key-
boards.

Ability to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute Structure.
Another fundamental requirement of an IRDS is the
depth (attribute-types) of metadata that can be described
to an IRDS. This criterion refers to the ability of an IRDS
to capture the descriptions of all the attribute-types
specified in the ANSI Core Standard Schema. Attribute-
types are used to describe the characteristics of the
entity-types described above. An IRDS should support
the following attribute-types.

Identification AttributesIdentification AttributesIdentification AttributesIdentification AttributesIdentification Attributes::::: They are used to name,
describe and identify an entity-type to the IRDS, for
example: name, synonym, alias, and description.

Representation AttributesRepresentation AttributesRepresentation AttributesRepresentation AttributesRepresentation Attributes::::: They are used to
describe the properties of an entity-type as represented in
the environment, for example: data type, length.

Statistical AttributesStatistical AttributesStatistical AttributesStatistical AttributesStatistical Attributes::::: They are used to indicate
how the entity-type is used in the overall environment,
for example: response-time, and access-information.

Control Attributes:Control Attributes:Control Attributes:Control Attributes:Control Attributes: These attributes give infor-
mation about object ownership, status, security, and
access control, for example: authority level, security
level, owner, password, and version.

Physical AttributesPhysical AttributesPhysical AttributesPhysical AttributesPhysical Attributes::::: They indicate the physical
characteristics of all the entity-types, for example: oper-
ating system, storage size, etc..

Ability to Capture Core Entity-RelationshipAbility to Capture Core Entity-RelationshipAbility to Capture Core Entity-RelationshipAbility to Capture Core Entity-RelationshipAbility to Capture Core Entity-Relationship
PropertiesPropertiesPropertiesPropertiesProperties

Another fundamentally important desirable fea-

1010101010 Vol. 5, No. 3

Journal of Database Management

ture of an IRDS is its ability to capture relationships and
support multiple relationship-types. Relationship prop-
erties enhance the semantics of the associations between
entity-types because they capture a precise definition of
how entity-types relate to each other. The following are
some salient relationship properties that should be sup-
ported by an IRDS.

NameNameNameNameName::::: The first property of any relationship-
type is its name. The name provides identification for a
specific relationship-type, gives it more meaning, and
helps in understanding the relationship between two
entity-types.

Maximum CardinalityMaximum CardinalityMaximum CardinalityMaximum CardinalityMaximum Cardinality::::: Another property of a
relationship is its maximum cardinality. Maximum car-
dinality refers to the maximum number of instances in
one entity that can becan becan becan becan be related to a given instance in the
related entity, and vice-versa. Usually, maximum cardi-
nality is specified as one-to-one, one-to-many, or many-
to-many. In many cases, however, assignment of a
specificspecificspecificspecificspecific value to maximum cardinality makes the sce-
nario more meaningful and helps toward better under-
standing of the relationship. For example, one table has
to have a number of rows, and it may not be meaningful
enough to just say that one table has many rows. Thus,
the ability to represent specific values for maximum
cardinality should be a desirable characteristic of an
IRDS.

Minimum CardinalityMinimum CardinalityMinimum CardinalityMinimum CardinalityMinimum Cardinality::::: Minimum cardinality
is another property of a relationship. Minimum cardinal-
ity refers to the minimum number of instances in one
entity that must bemust bemust bemust bemust be related to a given instance in the
related entity, and vice-versa. Minimum cardinality is
specified as zero (mandatory) or one (optional). For
example one table cannot exist without at least one
element or data field. This is a “table-to-element” man-
datory relationship. Usually, minimum cardinality of a
relationship is specified as optional-to-optional, optional-
to-mandatory, mandatory-to-optional, and mandatory-
to-mandatory.

IS-A RelationshipIS-A RelationshipIS-A RelationshipIS-A RelationshipIS-A Relationship: : : : : Sometimes there are entity-
types that are composed of a subset of another entity-
type. The entity-type that forms the subset is known as a
subtype, and the-entity-type that contains all the subsets
is known as the supertype. A generalization relationship,
or IS-A relationship, relates a supertype with a subtype.
It may be noted that the maximum cardinality of an IS-
A relationship between a subentity and a superentity is
always one-to-one and the minimum cardinality of such
a relationship is always zero-to-one.

Mutually Exclusive RelationshipsMutually Exclusive RelationshipsMutually Exclusive RelationshipsMutually Exclusive RelationshipsMutually Exclusive Relationships: : : : : In some
cases an entity may be mutually exclusively related to
two (or more) entities. If an entity-type A is mutually
exclusively related to two other entity-types, then at any
given point in time a given occurrence of the entity-type
A can be related to some occurrence of only one of the
two related entity-types, not both.

Recursive RelationshipsRecursive RelationshipsRecursive RelationshipsRecursive RelationshipsRecursive Relationships: : : : : A recursive relation-
ship or loop relationship occurs when an entity-type is
related to itself. For example, a “module” entity-type
could be “composed-of” other “modules”.

N-ary RelationshipsN-ary RelationshipsN-ary RelationshipsN-ary RelationshipsN-ary Relationships: : : : : Most of the relationships
between entity-types are binary in nature. However, in
some cases three or more entity-types are simultaneously
related. These types of relationships are called N-ary
relationships. As mentioned earlier, although this rela-
tionship property is not incorporated in the ANSI IRDS
Database architecture, it is an important desirable prop-
erty and is supported by the ISO architecture.

Additional CriteriaAdditional CriteriaAdditional CriteriaAdditional CriteriaAdditional Criteria
The ANSI IRDS standards committee report

(ANSI, 1989) and several authors (Glenwright, 1988;
Kull, 1987; Leon-Hong, 1982; Narayan, 1988; Ross,
1981) have suggested a number of desirable functional
features that should be considered in IRDS evaluation.
These features can appropriately be viewed as providing
the following types of functionality for IRDS implemen-
tations:

1. Support for the Systems Development Life Cycle
2. Support for System Documentation and Standards
3. Support for Data Security and Integrity
4. End user Support

Although this taxonomy may not be exhaustive,
it allows us to formulate a useful set of criteria from the
perspective of organizational usage of an IRDS imple-
mentation. As shown in Figure 2, we propose six addi-
tional criteria (consisting of sixteen sub-criteria which
are listed in Figure 3), each of which is discussed below.

Extensibility SupportExtensibility SupportExtensibility SupportExtensibility SupportExtensibility Support
The IRDS should support all the phases of the

SDLC such as Analysis, Design, Implementation, Test-
ing, Operation, and Maintenance. For the Analysis and
Design phases, the IRDS should have the capability to
store and record entity, attribute, and relationship
metadata related to these phases. Additionally, the IRDS

1111111111Summer 1994

Journal of Database Management

should provide a means for maintaining control over the
design specifications and ensure consistency between
the requirements and implementation. The IRDS should
also catalog an organization’s data resources and pro-
duce various reports of the data definitions, logical
groups, process-to-system and program-to-data rela-
tionships, which can be very useful to database design.

Similarly, the metadata from the IRDS can be
used to support the other phases of the SDLC. During the
Implementation phase, the programmer can take the
specifications from the Design phase and couple it with
metadata to produce program code for the Testing phase
and also to be stored as metadata and source data in the
IRDS. In the Testing phase the programmer can test the
program code from the Implementation phase using
reliable test data code to obtain operational metadata that
can also be stored in the IRDS.

During the Operation and Maintenance phase,
operational metadata from the IRDS can be combined
with the tested program code for the final production
system. These results can also be stored in the IRDS as
a final document that may be used for maintenance of the
system. During the Maintenance phase, the final docu-
ment, along with the input to the system, can be used to
maintain the production system. This phase can also
oversee and report any updates to the requirement speci-
fications to the users.

Thus an IRDS must permit the user to make
essentially unlimited extensions to any IRD schema
(ANSI, 1992). This capability would provide the user
with the power and flexibility to design a schema to fit
the particular needs of the organization or life cycle
phase that the IRDS is being used to support. The user
would have the freedom to extend the schema in any
manner that will be useful. This means that the IRD can
be structured to capture any type of metadata that the user
can define. Thus an IRDS should allow a user to add/
delete/modify the entity-types, attribute-types, and rela-
tionship-types in the IRDS.

Data Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning Support
Traditionally, documentation has been the last

task to be completed, as it is often not begun until the
system is just ready for delivery. It is often considered a
dull and routine task, resulting in outdated, inaccurate
and incomplete documentation. But documentation
should be recognized as a very crucial activity and the
IRDS can be used to automatically produce documenta-
tion from the database and the system (Durell, 1983).

The IRDS can store information about the application
system, programs and detailed description of each data
element. All this stored information can assist in de-
creasing the monotony of the task of documentation and
producing a well documented end product.

A well documented system establishes a com-
mon link between the system and the user. It tells the user
the characteristics and capabilities of the system, makes
the system easier to use and helps in data resource
sharing (Cunningham, 1986). Well enforced standards
in the system promote sharing of resources in a con-
trolled environment. There are two general types of data-
related standards, data definition standards and data
format conformance, and IRDS should be able to support
both these standards.

A data definition standard refers to a standard
way of describing data such as the naming of the data.
The naming standard may be in the form of rigid rules or
established conventions for assigning names to data
entities. Thus a specific data element will have only one
accepted meaning throughout the system and different
users may not use it to mean different things in different
contexts.

Data format conformance means a data element
must conform to a common set of accepted format rules
for the data element to retain the same meaning. Thus a
data element will have the same format or uniformly
accepted code through out the system. The IRDSs should
be used to store and record only accepted standards for
data elements, and it must be able to monitor and enforce
these standards using its edit and validation facilities and
screen out non-standard or non-conforming data ele-
ments (Brathwaite, 1988; Cunningham, 1986).

An IRDS should be able to provide the most
current documentation from its metadatabase (Modell,
1988). This depends on the completeness of the attribute
descriptions required for documenting the organization’s
information environment, as currently stored in the IRDS.
This criterion addresses the ease with which documenta-
tion can be obtained from the IRDS. There should also be
a provision to specify the status of the meta-entities, that
is “test”, “production”, or “history” and allow for more
than one version of the structure to exist in the IRDS
(Cunningham, 1986).

Security SupportSecurity SupportSecurity SupportSecurity SupportSecurity Support
Data security and integrity deals with protection

of data from unauthorized access and the absolute com-
pleteness and correctness of these data. The main thrust

1212121212 Vol. 5, No. 3

Journal of Database Management

of the IRDS is to provide control over all the data
resources. It is the centralized repository of information
relating to systems, programs, data, users and the rela-
tionships among them. Thus one should be able to use
IRDS to ensure that the appropriate levels of user access
controls are in place to provide a certain level of security
assurance (Allen, Loomis & Mannino, 1982; Kahn,
1985; Kahn & Lumsden, 1983).

Security support can be evaluated by checking
whether an IRDS has password control and functional
access control to its metadata, whether these features are
provided by the IRDS itself or the DBMS, and whether
the security facilities are coordinated with the DBMS to
effectively control and restrict access to legal users only.

Integrity SupportIntegrity SupportIntegrity SupportIntegrity SupportIntegrity Support
Integrity support is closely related to security

and is concerned with the integrity and reliability of the
metadata. This can be evaluated by ensuring that the edit
and validation functions allow checking for complete-
ness, consistency, currency, accuracy, and validity of
metadata, and whether error reporting, recovery func-
tions are provided.

Input/Output InterfaceInput/Output InterfaceInput/Output InterfaceInput/Output InterfaceInput/Output Interface
This criterion directly reflects how an IRDS will

be used and is a highly influential factor toward selecting
an IRDS. If the users find the outputs from this interface
to be understandable and useful, then from their point of
view the IRDS is a valuable tool. As per ANSI and ISO
specifications, an IRDS should offer an SQL interface as
a command language to modify and maintain the IRD,
and as a query language for the user to be able to perform
online queries against it. Additionally, an IRDS should
also offer a standard set of reports that will give detailed
information about the contents of the IRD, such as
reports describing all the entity-types or attribute-types,
and the relationship-types between entity-types.

User-FriendlinessUser-FriendlinessUser-FriendlinessUser-FriendlinessUser-Friendliness
End-users are the ultimate consumers of infor-

mation produced from data. They interface with the
system environment through a variety of mechanisms
including report generators, query languages and
preformatted interfaces supported by application pro-
grams. They make use of information provided through
these interfaces to do their jobs more productively and
efficiently. Thus, an IRDS should be able to be used as

a tool and support mechanism to enable end-users under-
stand the available information, its meaning and con-
straints on its usage. Metadata and ad-hoc queries can be
used to further enhance the utility of information pro-
vided to end users. Thus, built-in provisions such as pull-
down menus, on-line tutorial meaningful system prompts
and help screens are desirable features of any modern
software system and IRDS should be no exception.

Using the Proposed Criteria SetUsing the Proposed Criteria SetUsing the Proposed Criteria SetUsing the Proposed Criteria SetUsing the Proposed Criteria Set

The proposed criteria set shown in Figure 3 can
be used to evaluate IRDS products in two ways. One can
be the check-list approach, where users can check a
criterion if some given IRDS implements it. The user
may first check the broad criteria and then the detailed
criteria within each broad criterion. It is perhaps worth-
while to point out that if a product does not have some
functional capabilities along each of the three broad core
criteria, the user should take special precautions in
adopting the product. Further, if an organization decides
to adopt multiple products, even if they are from the
same vendor, it should ensure that the products are
similar in terms of the core criteria/subcriteria. Other-
wise, it may lead to unshareable and incompatible dictio-
nary systems. The problem may become even more
acute in a multi-vendor distributed environment.

The check-list approach, however, may prove
inadequate if multiple products meet all the criteria or
meet the same set of criteria/subcriteria. For example,
two products both may generally meet the subcriteria
relating to the Metadata Entity Structure criteria, but
they may differ in terms of the breadth of the Data,
System or External entities that they are able to support.
In such a scenario, a better approach would be to use a
quantitative comparison scheme such as the one de-
scribed below.

First, assign a relativerelativerelativerelativerelative weight to each of the ten
‘broad’ criteria based on its importance to the organiza-
tion (we suggest that core criteria be assigned greater
weights than the additional criteria for reasons discussed
earlier in the paper). Next, assign a relativerelativerelativerelativerelative weight to
each of the sub-criteria within each broad criterion (i.e.,
the sub-criteria weights for each individual broad crite-
rion should sum up to 1). Next, assign a numerical rating
(on a scale of 1 to 10) to each sub-criterion within a broad
criteria and use the corresponding weighting factors to
determine the total score for a given broad criterion.
Next, multiply this total score for each broad criterion by

1313131313Summer 1994

Journal of Database Management

Figure 4: IRDS Evaluation SchemaFigure 4: IRDS Evaluation SchemaFigure 4: IRDS Evaluation SchemaFigure 4: IRDS Evaluation SchemaFigure 4: IRDS Evaluation Schema

Criteria & SubcriteriaCriteria & SubcriteriaCriteria & SubcriteriaCriteria & SubcriteriaCriteria & Subcriteria Weight X Score = TotalWeight X Score = TotalWeight X Score = TotalWeight X Score = TotalWeight X Score = Total

1.01.01.01.01.0 Ability to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity StructureAbility to Capture Core Entity Structure
(Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = 0.130.130.130.130.13)))))

1.1 Data Entities 0.58 X 8 = 4.64
1.2 System Entities 0.22 X 7 = 1.54
1.3 External Entities 0.20 X 6 = 1.20

SUM (S) = 7.38

 Weighted Criteria Score 0.13 X 7.38 = 0.960.960.960.960.96
(W) (S) (WS)

2.02.02.02.02.0 Ability to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute StructureAbility to Capture Core Attribute Structure
(Weight (W) =0.13)(Weight (W) =0.13)(Weight (W) =0.13)(Weight (W) =0.13)(Weight (W) =0.13)

2.1 Identification Attributes 0.31 X 8 = 2.48
2.2 Representation Attributes 0.23 X 8 = 1.84
2.3 Statistical Attributes 0.13 X 6 = 0.78
2.4 Control Attributes 0.22 X 8 = 1.76
2.5 Physical Attributes 0.11 X 6 = 0.66

SUM (S) = 7.52

Weighted Criteria Score 0.13 X 7.52 = 0.980.980.980.980.98
(W) (S) (WS)

3.03.03.03.03.0 Ability to Capture Core Entity-Relationship PropertiesAbility to Capture Core Entity-Relationship PropertiesAbility to Capture Core Entity-Relationship PropertiesAbility to Capture Core Entity-Relationship PropertiesAbility to Capture Core Entity-Relationship Properties
(Weight (W) = 0.13)(Weight (W) = 0.13)(Weight (W) = 0.13)(Weight (W) = 0.13)(Weight (W) = 0.13)

3.1 Relationship Name 0.15 X 9 = 1.35
3.2 (Specific) Maximum Cardinality 0.13 X 0 = 0.00
3.3 Mandatory/Optional Relationships 0.17 X 9 = 1.53
3.4 Generalization(IS-A) Relationships 0.18 X 9 = 1.62
3.5 Mutually Exclusive Relationships 0.10 X 9 = 0.90
3.6 N-ary Relationships 0.16 X 0 = 0.00
3.7 Recursive Relationships 0.11 X 9 = 0.99

SUM (S) = 6.39

Weighted Criteria Score 0.13 X 6.39 = 0.830.830.830.830.83
(W) (S) (WS)

4.04.04.04.04.0 Extensibility SupportExtensibility SupportExtensibility SupportExtensibility SupportExtensibility Support
(Weight (W) = 0.12)(Weight (W) = 0.12)(Weight (W) = 0.12)(Weight (W) = 0.12)(Weight (W) = 0.12)

4.1 Add/Update/Delete Entity-types 0.34 X 9 = 3.06
4.2 Add/Update/Delete Attribute-types 0.33 X 9 = 2.97
4.3 Add/Update/Delete Relationship-types 0.33 X 9 = 2.97

SUM (S) = 9.00

Weighted Criteria Score 0.12 X 9 = 1.081.081.081.081.08
(W) (S) (WS)

5.05.05.05.05.0 Data Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning SupportData Documentation and Versioning Support
(Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = 0.110.110.110.110.11)))))

5.1 Current Attribute Descriptions 0.4 X 8 = 3.20
5.2 Standard Control 0.31 X 6 = 1.86
5.3 Version Control 0.29 X 6 = 1.74

SUM (S) = 6.80

Weighted Criteria Score 0.11 X 6.80 = 0.750.750.750.750.75
(W) (S) (WS)

1414141414 Vol. 5, No. 3

Journal of Database Management

6.06.06.06.06.0 Security SupportSecurity SupportSecurity SupportSecurity SupportSecurity Support
(Weight (W) =(Weight (W) =(Weight (W) =(Weight (W) =(Weight (W) =0.100.100.100.100.10)))))

6.1 Control Access through
Username/Password 0.62 X 8 = 4.96

6.2 Coordinate Access through DBMS 0.38 X 8 = 3.04
SUM (S) = 8.00

Weighted Criteria Score 0.10 X 8 = 0.800.800.800.800.80
 (W) (S) (WS)

7.07.07.07.07.0 Integrity SupportIntegrity SupportIntegrity SupportIntegrity SupportIntegrity Support
(Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = (Weight (W) = 0.090.090.090.090.09)))))

7.1 Provision of Edit and Validation
functions 0.34 X 9 = 3.06

7.2 Provision of Error Reporting
functions 0.33 X 9 = 2.97

7.3 Provision of Data Recovery
functions 0.33 X 9 = 2.97

SUM (S) = 9.00

Weighted Criteria Score 0.09 X 9 = 0.810.810.810.810.81
 (W) (S) (WS)

8.08.08.08.08.0 Input/Output InterfaceInput/Output InterfaceInput/Output InterfaceInput/Output InterfaceInput/Output Interface
(Weight (W) =(Weight (W) =(Weight (W) =(Weight (W) =(Weight (W) =0.100.100.100.100.10)))))

8.1 Query Language Support 0.34 X 8 = 2.72
8.2 Command Language Support 0.33 X 8 = 2.64
8.3 Predefined Standard Reports 0.33 X 8 = 2.64

SUM (S) = 8.00

Weighted Criteria Score 0.10 X 8.00 = 0.800.800.800.800.80
 (W) (S) (WS)

9.09.09.09.09.0 Use-FriendlinessUse-FriendlinessUse-FriendlinessUse-FriendlinessUse-Friendliness
(Weight (W) = 0.09)(Weight (W) = 0.09)(Weight (W) = 0.09)(Weight (W) = 0.09)(Weight (W) = 0.09)

10.1 Help and Pop-up Screens 0.47 X 8 = 3.76
10.2 Ease of Learning and Using

the Product 0.53 X 8 = 4.24
SUM (S) = 8.00

 Weighted Criteria Score 0.09 X 8.0 = 0.720.720.720.720.72
 (W) (S) (WS)

TOTAL SCORE (Sum of WSs) = TOTAL SCORE (Sum of WSs) = TOTAL SCORE (Sum of WSs) = TOTAL SCORE (Sum of WSs) = TOTAL SCORE (Sum of WSs) = 7.737.737.737.737.73

Figure 4 Figure 4 Figure 4 Figure 4 Figure 4 (continued): IRDS Evaluation Schema: IRDS Evaluation Schema: IRDS Evaluation Schema: IRDS Evaluation Schema: IRDS Evaluation Schema

its weighing factor and add all such scores to arrive at a
final total for a given IRDS. An illustrative example of
this quantification scheme is presented in Figure 4. It
may be noted that the proposed quantification scheme
allows for the comparison of different IRDS products at
the subcriteria, criteria, and overall level, and highlights
the inadequacies of each specific product.

In order to illustrate the use of the proposed

evaluation scheme, an independent data base consultant,
with extensive experience with IRDS products, was
asked to use it to evaluate a leading IRDS product. The
numbers provided in Figure 4 are the results of his
analysis. It is interesting to note that a total score of 7.73
out of a possible 10 for one of the most popular packages
available today, still leaves plenty of room for improve-
ment.

1515151515Summer 1994

Journal of Database Management

ConclusionConclusionConclusionConclusionConclusion

In this paper, we developed a detailed set of
criteria with which the functional capabilities of differ-
ent IRDS products can be compared. Our proposed
criteria are based on published literature in the area of
IRDS and the ANSI and ISO standards developed for
IRDSs, and our own experience as researchers/educa-
tors and developers of database applications.

We hope that the proposed criteria set will be of
interest to both practitioners and researchers. Practitio-
ners should find the proposed criteria (specifically the
‘IRDS Evaluation Schema’ presented in Figure 4) use-
ful in making selections among prospective IRDS offer-
ings.

We would, however, like to point out that this
paper by no means is the final authority on how to
evaluate IRDSs, nor does the criteria set presented in this
paper represent a fully complete set of required features
of IRDS. The concept of criteria development and evalu-
ation will become more accurate, as more detailed and
diverse ideas are presented. This may be accomplished
through surveys of experts or further research into the
background and development of IRDS requirements.
Researchers may use the proposed criteria as a stepping
stone towards a more refined and/or a more extensive set
of characteristics to be considered. As the area of IRDS
grows and new features and functions are required of the
IRDSs, new criteria and subcriteria could be added to the
list presented in this paper. The quantification and
weighting technique may also be improved upon.

Finally, as mentioned in the introduction, there
is a rapid growth in IRDS implementations in related
software technologies such as ICASE and DBMS. It may
therefore be difficult at times to evaluate IRDS indepen-
dently of these facilities. By the same token, the pro-
posed framework developed in this paper could very
well be used to evaluate the repository portion of these
related technologies. The framework could conceivably
be broadened to take into account the other functionalities
provided by such technologies.

ReferencesReferencesReferencesReferencesReferences

Allen, F.W., Loomis, M. E., Mannino, M.V. (1982). The Integrated
Dictionary/Directory System. ACM Computing Surveys, 14(2), 246-
286.

American National Standards Institute (ANSI X3.138-1989). Ameri-
can National Standard Information Resource Dictionary System.

American National Standards Institute (ANSI X3.138-1992). Ameri-
can National Standard Information Resource Dictionary System.

Appleton, D. S. (1987). The Modern Data Dictionary. Datamation,
March 1, 66-68.

Brathwaite, K.S. (1988). Analysis, Design, & Implementation of
Data Dictionaries. McGraw-Hill.

Bruce, T., Fuller, J. and Moriarty, T. (1989). So You Want a
Repository. Database Programming and Design, May, 60-69.

Cashin, J. (1988). Another Megatrend: IRDS is the Future. Software
Magazine, November, 35-39.

Cunningham, E., Davis, R. (1986). Data Dictionary Systems and
Their Application in Auditing. Data Processing., 28(1), Jan/Feb, 30-
35.

Date, C. J. (1990). An Introduction to Database Systems: Volume I.
5th ed. Addison-Wesley.

Davis, J.P., Bonnell R.D. (1988). EDICT—An Enhanced Relational
Data Dictionary: Architecture and Example. IEEE Computer, 184-
191.

Dolk, D. R., Kirsch R. A. (1987). A Relational Information Dictio-
nary System. Comm. of the ACM, 30, 1, January, 48-61.

Durell, W. (1983). Disorder to Discipline via the Data Dictionary.
Journal of Systems Management, May, 12-19.

Gillenson, M. L. and Frost, R. D. (1993). The Evolution of the Meta-
Data Concept: Dictionaries, Catalogs, and Repositories. Journal of
Database Management, 4(3), 17-26.

Glenwright, J. C. (1988). Tips to Manage Your Data. Database
Programming & Design., November, 13-16.

Hazzah, A. (1989). Data Dictionaries: Paths to a Standard. Database
Programming & Design., August, 26-35.

International Standards Organization (1989). Information process-
ing systems: Information Resource Dictionary System (IRDS) Frame-
work. Draft International Standard ISO-IEC DIS 10027, March, 11.

Jones, M. R. (1992). Unveiling Repository Technology. Database
Programming & Design., April, 28-35.

Kahn, B. K. (1985). An Environmentally Dependent Framework for
Data Dictionary Systems. MIS Quarterly, September, 199-220.

Kahn, B. K., Lumsden, E. W. (1983). A User-oriented Framework for
Data Dictionary Systems. DATA BASE, Fall, 28-36.

Kull, D. (1987). Data Dictionaries Can Point the Way. Computer &
Communications Decisions, July, 69-70,97,126.

1616161616 Vol. 5, No. 3

Journal of Database Management

Leon-Hong, B. W., Plagman, B. K. (1982) Data Dictionary/Direc-
tory Systems: Administration, Implementation and Usage. John
Wiley & Sons, Inc.

March, S. T., Kim, Y. (1988-89). Information Resource Manage-
ment: A Metadata Perspective. Journal of Management Information
Systems, 5, 3, Winter, 5-18.

Meador, J. G. (1987). Evaluating Dictionary Technology: The Case
for Integrated Systems. Auerbach Publications on DBMS 22-04-12.

Modell, M. E. (1988). Management’s Perspective of Data Dictionary
Systems. Auerbach Publications on DBMS 21-20-10.

Narayan, R. (1988). Data Dictionary: Implementation, Use, and
Maintenance, Prentice Hall.

Plotkin, D. (1992). Selecting a Repository. Database Programming
& Design, April, 39-46.

Ross, R. (1981). Data Dictionary Systems and Data Administration,
Amacom.

Protocols Standards and Communications Inc. (1989). Situation
Report on the Information Resource Directory System (IRDS), (Pre-
pared for the National Archives of Canada), Ottawa, Canada.

Van Duyn, J. (1982). Developing a Data Dictionary System, Prentice-
Hall.

Venkatakrishnan, V. (1988). Differences in dictionaries.
Computerworld, March 14. S13-S16.

Weldon, J. L. (1985). The Case for Active Data Dictionaries, Auerbach
Publications on DBMS 22-04-10.

BIJOY BORDOLOI is an Assistant Professor of Information Systems and Management Sciences at The
University of Texas at Arlington. He received his Ph.D. in MIS from Indiana University, Bloomington.
His current research interests include data modeling, data administration, distributed database systems,
and software project management. His publications have appeared in several journals including Journal
of Information Systems Management, Journal of Information Science and Technology, Journal of
Microcomputer Systems Management, International Journal of Information Resource Management, and
International Journal of Production and Operations Management.

SUMIT SIRCAR is Director of the Center of Information Technologies Management at the University of
Texas at Arlington. He received his doctorate from The Harvard Business School. He specializes in the
management of information technology and has published numerous articles in journals such as the
Communications of the ACM and Information and Management.

CRAIG SLINKMAN is an Associate Professor of Information Systems and Management Sciences at The
University of Texas at Arlington. He received his Ph.D. in Quanitative Analysis from University of
Minnesota. His current research interests include logical and physical database design, CASE
technology, and health-case information systems. His publications have appeared in several journals
including MIS Quarterly, Communications in Statistics, and other journals.

NITANT CHKRANARAYAN is a senior consultant with Database Consultants, Inc., Houston, Texas. He
receved his BS in Computer Science and MS in Information Systems from University of Texas at
Arlington. He has been associated with the database consulting industry for the last 5 years.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/article/functionality-oriented-criteria-set-evaluating/51135

Related Content

Performance Studies of Locking Protocols for Real-time Databases With Earliest Deadline First
Kam-Yiu Lam, Sheung-Lun Hungand Ken Chee-Keung Law (1995). Journal of Database Management (pp.

22-32).

www.irma-international.org/article/performance-studies-locking-protocols-real/51148

The Development of On-line Tests Based on Multiple Choice Questions
Geoffrey G. Royand Jocelyn Armarego (2003). Web-Powered Databases (pp. 121-143).

www.irma-international.org/chapter/development-line-tests-based-multiple/31426

Repairing and Querying Inconsistent Databases
Gianluigi Greco, Sergio Grecoand Ester Zumpano (2003). Effective Databases for Text & Document

Management (pp. 318-359).

www.irma-international.org/chapter/repairing-querying-inconsistent-databases/9218

Aiding the Development of Active Applications: A Decoupled Rule Management Solution
Florian Danieland Giuseppe Pozzi (2010). Principle Advancements in Database Management

Technologies: New Applications and Frameworks (pp. 250-270).

www.irma-international.org/chapter/aiding-development-active-applications/39359

ONTOMETRIC: A Method to Choose the Appropriate Ontology
Adolfo Lozano-Telloand Asunción Gomez-Perez (2004). Journal of Database Management (pp. 1-18).

www.irma-international.org/article/ontometric-method-choose-appropriate-ontology/3308

http://www.igi-global.com/article/functionality-oriented-criteria-set-evaluating/51135
http://www.irma-international.org/article/performance-studies-locking-protocols-real/51148
http://www.irma-international.org/chapter/development-line-tests-based-multiple/31426
http://www.irma-international.org/chapter/repairing-querying-inconsistent-databases/9218
http://www.irma-international.org/chapter/aiding-development-active-applications/39359
http://www.irma-international.org/article/ontometric-method-choose-appropriate-ontology/3308

