
19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-60960-215-4.ch002

INTRODUCTION

The nature of software development has changed
in recent years. Today, software is included in a
vast amount of products, such as cars, mobile
phones, entertainment and so forth. The markets
for these products are characterized as highly dy-
namic and with frequent changes in the needs of
the customers. As a consequence, companies have
to respond rapidly to changes in needs requiring
them to be very flexible.

Due to this development, agile methods have
emerged. In essence agile methods are light-weight
in nature, work with short feedback and devel-
opment cycles, and involve the customer tightly
in the software development process. The main
principles that guided the development of differ-
ent agile practices such as eXtreme programming
(Beck 2000) and SCRUM (Schwaber 2004) are
summarized in the agile manifesto (AgileMani-
festo). As shown in a systematic review by (Dybå
and Dingsøyr 2008) agile has received much at-
tention from the research community.

Kai Petersen
Blekinge Institute of Technology, Sweden & Ericsson AB, Sweden

Is Lean Agile and Agile Lean?
A Comparison between Two Software

Development Paradigms

ABSTRACT

Lean and agile development are two development paradigms that were proposed to help dealing with
highly dynamic markets and the resulting rapid changes in customer needs. As both paradigms address
a similar problem, it is interesting to compare them and by that, determine what both paradigms can
learn from each other. This chapter compares the paradigms with regard to goals, principles, practices,
and processes. The outcome of the comparison is: (1) both paradigms share the same goals; (2) the
paradigms define similar principles, with one principle (“see the whole”) being unique to lean; (3) both
paradigms have unique as well as shared principles; (4) lean does not define processes, while agile has
proposed different ones such eXtreme programming and SCRUM.

20

Is Lean Agile and Agile Lean?

While agile became more and more popular
lean software development has emerged with
the publication of the book (Poppendieck and
Poppendieck 2003), which proposes ways of
how practices from lean manufacturing could
be applied in the software engineering context.
Lean has a very strong focus on removing waste
from the development process, i.e. everything
that does not contribute to the customer value.
Furthermore, according to lean the development
process should only be looked at from an end-to-
end perspective to avoid sub-optimization. The aim
is to have similar success with lean in software
development as was the case in manufacturing.
That is, delivering what the customer really needs
in a very short time.

Both development paradigms (agile and lean)
seem similar in their goal of focusing on the cus-
tomers and responding to their needs in a rapid
manner. Though, it is not well understood what
distinguishes both paradigms from each other. In
order to make the best use of both paradigms it is
important to understand differences and similari-
ties for two main reasons:

•	 Research results from principles, practices,
and processes shared by both paradigms
are beneficial to understand the usefulness
of both paradigms. This aids in generaliz-
ing and aggregating research results to de-
termine the benefits and limitations of lean
as well as agile at the same time.

•	 The understanding of the differences shows
opportunities of how both paradigms can
complement each other. For instance, if
one principle of lean is not applied in agile
it might be a valuable addition.

The comparison is based on the general descrip-
tions of the paradigms. In particular, this chapter
makes the following contributions:

•	 Aggregation of lean and agile principles
and an explicit mapping of principles to
practices.

•	 A comparison showing the overlap and dif-
ferences between principles regarding dif-
ferent aspects of the paradigms.

•	 A linkage of the practices to the principles
of each paradigm, as well as an investiga-
tion whether the practices are considered
part of either lean or agile, or both of the
paradigms.

The remainder of the chapter is structured as
follows: Section 2 presents background on lean and
agile software development. Section 3 compares
the paradigms with respect to goals, principles,
practices, and processes. Section 4 discusses the
findings focusing on the implications on industry
and academia. Section 5 concludes the chapter.

BACKGROUND

Plan-driven software development is focused on
heavy documentation and the sequential execu-
tion of software development activities. The best
known plan-driven development model is the
waterfall model introduced by Royce in the 1970s
(Royce 1970). His intention was to provide some
structure for software development activities. As
markets became more dynamic companies needed
to be able to react to changes quickly. However, the
waterfall model was built upon the assumption that
requirements are relatively stable. For example,
the long lead-times in waterfall projects lead to a
high amount of requirements being discarded as
the requirements became obsolete due to changes
in the needs of the customers. Another problem
is the reduction of test coverage due to big-bang
integration and late testing. Testing often has to
be compromised as delays in earlier phases (e.g.
implementation and design) lead to less time for
testing in the end of the project.

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/lean-agile-agile-lean/51967

Related Content

Towards Method Component Contextualization
Elena Kornyshova, Rébecca Deneckèreand Bruno Claudepierre (2013). Frameworks for Developing

Efficient Information Systems: Models, Theory, and Practice (pp. 337-368).

www.irma-international.org/chapter/towards-method-component-contextualization/76630

Use of Machine Learning to Detect Lung Cancer
Krishna Kadam (2022). International Journal of Software Innovation (pp. 1-12).

www.irma-international.org/article/use-of-machine-learning-to-detect-lung-cancer/297988

The Impact of Regulatory Compliance on Agile Software Processes with a Focus on the FDA

Guidelines for Medical Device Software
Hossein Mehrfardand Abdelwahab Hamou-Lhadj (2011). International Journal of Information System

Modeling and Design (pp. 67-81).

www.irma-international.org/article/impact-regulatory-compliance-agile-software/53206

An Industrial Case Study on Managing Variability with Traceability in Software Product Lines
Taeho Kimand Sungwon Kang (2015). International Journal of Software Innovation (pp. 1-15).

www.irma-international.org/article/an-industrial-case-study-on-managing-variability-with-traceability-in-software-product-

lines/121544

Text-Dependent and Text-Independent Writer Identification Approaches: Challenges and Future

Directions
Rajandeep Kaur, Rajneesh Raniand Roop Pahuja (2022). International Journal of Software Innovation (pp.

1-23).

www.irma-international.org/article/text-dependent-and-text-independent-writer-identification-approaches/297514

http://www.igi-global.com/chapter/lean-agile-agile-lean/51967
http://www.irma-international.org/chapter/towards-method-component-contextualization/76630
http://www.irma-international.org/article/use-of-machine-learning-to-detect-lung-cancer/297988
http://www.irma-international.org/article/impact-regulatory-compliance-agile-software/53206
http://www.irma-international.org/article/an-industrial-case-study-on-managing-variability-with-traceability-in-software-product-lines/121544
http://www.irma-international.org/article/an-industrial-case-study-on-managing-variability-with-traceability-in-software-product-lines/121544
http://www.irma-international.org/article/text-dependent-and-text-independent-writer-identification-approaches/297514

