
75

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-60960-215-4.ch004

INTRODUCTION

According to the Lehman’s first law, an informa-
tion system must continually evolve or it will
become progressively less suitable in real-world

environments (Lehman et al., 1998). Indeed,
companies count on a vast number of large legacy
systems which are not immune to software erosion
and software ageing, i.e., legacy information sys-
tems that become progressively less maintainable
(Polo et al., 2003). Nevertheless, software erosion
is due to maintenance itself and the evolution of

Ricardo Pérez-Castillo
University of Castilla-La Mancha, Spain

Ignacio García Rodríguez de Guzmán
University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

Architecture-Driven
Modernization

ABSTRACT

Legacy information systems can be a serious headache for companies because, on the one hand, these
systems cannot be thrown away since they store a lot of valuable business knowledge over time, and on
the other hand, they cannot be maintained easily at an acceptable cost. For many years, reengineer-
ing has been a solution to this problem because it facilitates the reuse of the software artifacts and
knowledge embedded in the system. However, reengineering often fails due to the fact that it carries
out non-standardized and ad hoc processes. Currently, software modernization, and particularly ADM
(Architecture-Driven Modernization), standardized by the OMG, is proving to be an important solu-
tion to that problem, since ADM advocates carrying out reengineering processes taking into account
the principles and standards of model-driven development. This chapter provides an overview of ADM
and shows how it allows legacy information systems to evolve, making them more agile, preserving the
embedded business knowledge, and reducing maintenance costs. Also, this chapter presents the software
archeology process using ADM and some ADM success stories.

76

Architecture-Driven Modernization

the system over time. It is possible to measure this
erosion using different metrics (Visaggio, 2001),
e.g., dead code, clone programs, missing capaci-
ties, inconsistent data and control data (coupling),
among others.

The successive changes in an information
system degrade its quality, and thus, a new and
improved system must replace the previous one.
However, the wholesale replacement of these
systems from scratch is risky since it has a great
impact in technological, human and economic
terms (Koskinen et al., 2004; Sneed, 2005). The
technological and human point of view is affected
since replacement would involve retraining all the
users in order to understand the new system and
the new technology, or the new system may lack
specific functionalities that are missing due to the
technological changes. Moreover, the economic
point of view is also affected since the replacement
of an entire legacy system implies a low Return of
Investment (ROI) in that system. In addition, the
development or purchase of a new system could
exceed a company’s budget.

For example, let us imagine a transmission belt
in a car engine which deteriorates over use and
over time. When this piece is damaged, it must be
replaced, and then the engine operates normally.
This example is easy, but an information system
used in a company is more difficult. When this
system ages, it cannot simply be replaced by
another new system for two important reasons:
(i) a belt costs a few dollars while an enterprise
information system costs thousands of dollars,
but in addition (ii) the aged system embeds a lot
of business knowledge over time that is lost if it
is replaced, thus the company with a new system
may not operate normally like the car engine.

When companies are faced with the phenome-
non of software erosion, evolutionary maintenance
is a better solution to obtain improved systems,
without discarding the existing systems, thus
minimizing the software erosion effects. Evolu-
tionary maintenance makes it possible to manage
controllable costs and preserves the valuable busi-

ness knowledge embedded in the legacy system,
since 78% of maintenance changes are corrective
or behaviour-preserving (Ghazarian, 2009).

Over the last two decades, reengineering has
been the main tool for addressing the evolution-
ary maintenance of legacy systems (Bianchi et
al., 2003). Reengineering preserves the legacy
knowledge of the systems and makes it possible
to change software easily, reliably and quickly,
resulting in a maintenance cost that is also toler-
able (Bennett et al., 2000).

The reengineering is the examination and altera-
tion of a subject system to reconstitute it in a new
form and the subsequent implementation of the
new form […] This may include modifications
with respect to new requirements not met by the
original system.(Chikofsky et al., 1990)

Nevertheless, a 2005 study states that over 50%
of reengineering projects fail (Sneed, 2005). This is
due to the fact that in most cases the reengineering
usually has two main problems when dealing with
specific challenges at this point in time:

•	 the reengineering of large complex legacy
information systems is very difficult to au-
tomate (Canfora et al., 2007), therefore the
maintenance cost grows significantly.

•	 the traditional reengineering processes
lacks formalization and standardization
(Kazman et al., 1998), and thus different
reengineering tools that address specific
tasks in the reengineering process cannot
be integrated or reused in different reengi-
neering projects.

For these reasons, the software industry is
demanding reengineering processes that enable
the evolutionary maintenance of legacy systems
in an automatic and standardized way. The typi-
cal reengineering concept has shifted to so-called
Architecture-Driven Modernization (ADM) as a
solution to those demands.

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/architecture-driven-modernization/51969

Related Content

SystemC Platform Modeling for Behavioral Simulation and Performance Estimation of

Embedded Systems
Hector Posadas, Juan Castillo, David Quijano, Victor Fernandez, Eugenio Villarand Marcos Martinez

(2010). Behavioral Modeling for Embedded Systems and Technologies: Applications for Design and

Implementation (pp. 219-243).

www.irma-international.org/chapter/systemc-platform-modeling-behavioral-simulation/36344

Intelligent Analysis of Software Maintenance Data
Marek Reformat, Petr Musilekand Efe Igbide (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 189-221).

www.irma-international.org/chapter/intelligent-analysis-software-maintenance-data/29390

A Correlation-Based Feature Selection and Classification Approach for Autism Spectrum

Disorder
Manvi Vermaand Dinesh Kumar (2021). International Journal of Information System Modeling and Design

(pp. 51-66).

www.irma-international.org/article/a-correlation-based-feature-selection-and-classification-approach-for-autism-

spectrum-disorder/276418

Importance of Systems Engineering in the Development of Information Systems
Miroljub Kljajicand John V. Farr (2010). Emerging Systems Approaches in Information Technologies:

Concepts, Theories, and Applications (pp. 51-66).

www.irma-international.org/chapter/importance-systems-engineering-development-information/38173

A Novel Approach of Load Balancing and Task Scheduling Using Ant Colony Optimization

Algorithm
Selvakumar A.and Gunasekaran G. (2019). International Journal of Software Innovation (pp. 9-20).

www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-

optimization-algorithm/223519

http://www.igi-global.com/chapter/architecture-driven-modernization/51969
http://www.irma-international.org/chapter/systemc-platform-modeling-behavioral-simulation/36344
http://www.irma-international.org/chapter/intelligent-analysis-software-maintenance-data/29390
http://www.irma-international.org/article/a-correlation-based-feature-selection-and-classification-approach-for-autism-spectrum-disorder/276418
http://www.irma-international.org/article/a-correlation-based-feature-selection-and-classification-approach-for-autism-spectrum-disorder/276418
http://www.irma-international.org/chapter/importance-systems-engineering-development-information/38173
http://www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-optimization-algorithm/223519
http://www.irma-international.org/article/a-novel-approach-of-load-balancing-and-task-scheduling-using-ant-colony-optimization-algorithm/223519

