
333

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

DOI: 10.4018/978-1-60960-215-4.ch014

Achilleas Achilleos
University of Cyprus, Cyprus

Nektarios Georgalas
British Telecom (BT) Innovate, UK

Kun Yang
University of Essex, UK

George A. Papadopoulos
University of Cyprus, Cyprus

A Software Cost Model to
Assess Productivity Impact

of a Model-Driven Technique
in Developing Domain-
Specific Design Tools

ABSTRACT

Programming languages have evolved through the course of research from machine dependent to high-
level “platform-independent” languages. This shift towards abstraction aims to reduce the effort and
time required by developers to create software services. It is also a strong indicator of reduced develop-
ment costs and a direct measure of a positive impact on software productivity. Current trends in software
engineering attempt to raise further the abstraction level by introducing modelling languages as the key
components of the development process. In particular, modelling languages support the design of software
services in the form of domain models. These models become the main development artefacts, which are
then transformed using code generators to the required implementation. The major predicament with
model-driven techniques is the complexity imposed when manually developing the domain-specific design
tools used to define models. Another issue is the difficulty faced in integrating these design tools with

334

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

INTRODUCTION

The escalating and rapidly changing user require-
ments contribute towards increased complexity in
the software development process. Furthermore,
the advancements and diversity in technologies
currently present escalate further the complex-
ity introduced to the process. Consequently, the
software engineering community seeks innovative
and abstract techniques that provide the capability
to scale down the complexity problem, in order
to simplify and expedite the development of
domain-specific software services. The objective
is to provide “platform-independent” techniques
that support the creation of software services at
an abstract level steering the developer away from
platform-specific implementation complexities.

During the early years of Software Engineering
the difficulties and pitfalls of designing complex
software services were identified and a quest for
improved software development methodologies
and tools began (Wirth, 2008). The first steps
towards this goal introduced formal notations,
known as programming languages, used mainly
for performing mathematical analysis computing
tasks. Examples of such numerical programming
languages are FORTRAN, Algol and COBOL.
Since then demand for more powerful software
applications that perform complex computational
tasks, rather than simple mathematical tasks, has
largely grown. Therefore, it was acknowledged
that more competent programming languages,
software tools and automation capabilities were

required to successfully implement these complex
computing tasks (Wirth, 2008).

The software engineering discipline concen-
trated on the development of high-level program-
ming languages, which simplify the development
of software applications. A minor setback in the
inclination towards programming abstraction was
the machine dependent C language. As Wirth
(2008, p. 33) clearly states:

“From the point of view of software engineering,
the rapid spread of C therefore represented a great
leap backward....... It revealed that the community
at large had hardly grasped the true meaning of
the term “high-level language”, which became a
poorly understood buzzword. What, if anything,
was to be “high level” now?”

Although the C language provides efficiency
in creating simple hardware-dependent software
services, it proved scarce and complex in devel-
oping, testing and maintaining large and versatile
software applications (Wirth, 2008). The lessons
learned from using the C language guided though
software engineers to devise abstract and disci-
plined software techniques, like the predominant
Object-Oriented (OO) programming model
(Chonacky, 2009). On the basis of this model
different 3GLs were developed such as Smalltalk,
C++, Java and C#. These languages aimed to raise
the level abstraction in software engineering and
facilitate the definition of disciplined, systematic
and object- oriented techniques for software devel-
opment. 3GLs allow building advanced software

model validation tools and code generators. In this chapter a model-driven technique and its supporting
model-driven environment are presented, both of which are imperative in automating the development
of design tools and achieving tools integration to improve software productivity. A formal parametric
model is also proposed that allows evaluating the productivity impact in generating and rapidly integrat-
ing design tools. The evaluation is performed on the basis of a prototype domain-specific design tool.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-cost-model-assess-productivity/51979

Related Content

Fatigue Monitoring and Recognition During Basketball Sports via Physiological Signal Analysis
Zhenhua Xie (2022). International Journal of Information System Modeling and Design (pp. 1-11).

www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-

analysis/313581

Towards an Integrated Model of Knowledge Sharing in Software Development: Insights from a

Case Study
Karlheinz Kautzand Annemette Kjærgaard (2009). Software Applications: Concepts, Methodologies, Tools,

and Applications (pp. 1714-1741).

www.irma-international.org/chapter/towards-integrated-model-knowledge-sharing/29473

Software Development Using Service Syndication Based on API Handshake Approach between

Cloud-Based and SOA-Based Reusable Services
Vishav Vir Singh (2012). Software Reuse in the Emerging Cloud Computing Era (pp. 136-157).

www.irma-international.org/chapter/software-development-using-service-syndication/65170

A Study on Improved Deep Learning Structure Based on DenseNet
Sang-Kwon Yun, Hye Jeong Kwonand Jongbae Kim (2022). International Journal of Software Innovation

(pp. 1-13).

www.irma-international.org/article/a-study-on-improved-deep-learning-structure-based-on-densenet/289595

A Software Engineering Approach for Access Control to Multi-Level-Security Documents
Muneer Ahmad, Noor Zaman, Low Tang Jungand Fausto Pedro García Márquez (2013). Software

Development Techniques for Constructive Information Systems Design (pp. 345-353).

www.irma-international.org/chapter/software-engineering-approach-access-control/75756

http://www.igi-global.com/chapter/software-cost-model-assess-productivity/51979
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581
http://www.irma-international.org/chapter/towards-integrated-model-knowledge-sharing/29473
http://www.irma-international.org/chapter/software-development-using-service-syndication/65170
http://www.irma-international.org/article/a-study-on-improved-deep-learning-structure-based-on-densenet/289595
http://www.irma-international.org/chapter/software-engineering-approach-access-control/75756

