
357

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

DOI: 10.4018/978-1-60960-215-4.ch015

INTRODUCTION

With the proliferation of multi-core architectures
(Akhter, 2006) for embedded processors, multi-

core programming for embedded systems is no
longer a luxury. We need embedded software
engineers to be adept in programming such
processors; however, the reality is that very few
engineers know how to program them. The cur-
rent state-of-the-art technology in multi-core

Shang-Wei Lin
National Chung Cheng University, Taiwan

Chao-Sheng Lin
National Chung Cheng University, Taiwan

Chun-Hsien Lu
National Chung Cheng University, Taiwan

Yean-Ru Chen
National Taiwan University, Taiwan

Pao-Ann Hsiung
National Taiwan University, Taiwan

Model-Driven Development of
Multi-Core Embedded Software

ABSTRACT

Multi-core processors are becoming prevalent rapidly in personal computing and embedded systems.
Nevertheless, the programming environment for multi-core processor based systems is still quite im-
mature and lacks efficient tools. This chapter will propose a new framework called VERTAF/Multi-Core
(VMC) and show how software code can be automatically generated from high-level SysML models of
multi-core embedded systems. It will also illustrate how model-driven design based on SysML can be
seamlessly integrated with Intel’s Threading Building Blocks (TBB) and Quantum Platform (QP) middle-
ware. Finally, this chapter will use a digital video recording (DVR) system to illustrate the benefits of
the proposed VMC framework.

358

Model-Driven Development of Multi-Core Embedded Software

programming is based on the use of language
extensions such as OpenMP (“OpenMP,” 2008),
multi-core Java (Robert Eckstein, 2008) or librar-
ies such as Intel Threading Building Blocks (TBB)
(Reinders, 2007), Microsoft® Task Parallel Library
(TPL)/ Parallel LINQ (PLINQ) (“Introduction to
PLINQ”), (Daan Leijen & Judd Hall, 2007).

OpenMP, multi-core Java, TBB, and
TPL/PLINQ are all very useful when program-
mers are already experts in multithreading and
multi-core programming; however, there still
exists a tremendous challenge in this urgent
transition from unicore systems to multi-core
systems. To aid embedded software designers in a
smoother transition, we propose a framework that
integrates software engineering techniques such
as software component reuse, formal software
synthesis techniques such as scheduling and code
generation, formal verification techniques such
as model checking, and multi-core programming
technique such as TBB.

Several issues are encountered in the develop-
ment of the integrated design framework. First and
foremost, we need to decide upon an architecture
for the framework. Since our goal is to integrate
reuse, synthesis, and verification, we need to
have greater control on how the final generated
application will be structured, thus we have chosen
to implement it as an object-oriented application
framework (Fayad & Schmidt, 1997), which is a
“semi-complete” application, where users fill in
application specific objects and functionalities.
A major feature is “inversion of control”, that is
the framework decides on the control flow of the
generated application, rather than the designer.
Other issues encountered in architecting an ap-
plication framework for multi-core embedded
software are as follows.

1. To allow software component reuse, how
do we define the syntax and semantics of a
reusable component? How can a designer
uniformly and guidedly specify the require-
ments of a system to be designed? How can

the existing reusable components with the
user-specified components be integrated into
a feasible working system?

2. What is the control-data flow of the automatic
design and verification process? When do
we verify and when do we schedule?

3. What kinds of model can be used for each
design phase, such as scheduling and
verification?

4. What method is to be used for verification?
How do we automate the process? What
kinds of abstraction are to be employed when
system complexity is beyond our handling
capabilities?

5. How do we generate portable code that not
only crosses operating systems but also
hardware platforms. What is the structure
of the generated code?

6. How much and what kinds of explicit par-
allelism must be specified by a software
engineer through system modeling? How
can we automatically and correctly realize
the user-specified models into multi-core
embedded software code?

Briefly, our solutions to the above issues can
be summarized as follows.

1. Software Component Reuse and
Integration: A subset of the Systems
Modeling Language (SysML) is used with
minimal restrictions for automatic design
and analysis. Precise syntax and formal
semantics are associated with each kind of
SysML diagram. Guidelines are provided
so that requirement specifications are more
error-free and synthesizable.

2. Control Flow: A specific control flow is
embedded within the framework, where
scheduling is first performed and then veri-
fication because the complexity of verifica-
tion can be greatly reduced after scheduling
(Hsiung, 2000).

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-development-multi-core/51980

Related Content

Plant Leaf Disease Detection Using CNN Algorithm
 Deepalakshmi P., Prudhvi Krishna T., Siri Chandana S., Lavanya K.and Parvathaneni Naga Srinivasu

(2021). International Journal of Information System Modeling and Design (pp. 1-21).

www.irma-international.org/article/plant-leaf-disease-detection-using-cnn-algorithm/273224

Knowledge Management and Quality Control in Software Outsourcing Projects
Rajorshi Sen Gupta (2022). Research Anthology on Agile Software, Software Development, and Testing

(pp. 1484-1510).

www.irma-international.org/chapter/knowledge-management-and-quality-control-in-software-outsourcing-projects/294528

Architecture for Integration and Migration of Information Systems by Using SOA Services across

Heterogeneous System Boundaries
Lars Frankand Rasmus Ulslev Pedersen (2013). Integrated Information and Computing Systems for

Natural, Spatial, and Social Sciences (pp. 177-191).

www.irma-international.org/chapter/architecture-integration-migration-information-systems/70609

Principle for Engineering Service Based System by Swirl Computing
Shigeki Sugiyamaand Lowry Burgess (2012). Advanced Design Approaches to Emerging Software

Systems: Principles, Methodologies and Tools (pp. 48-60).

www.irma-international.org/chapter/principle-engineering-service-based-system/55435

A Systematic Literature Review on Test Case Prioritization Techniques
Harendra Singh, Laxman Singhand Shailesh Tiwari (2022). International Journal of Software Innovation

(pp. 1-36).

www.irma-international.org/article/a-systematic-literature-review-on-test-case-prioritization-techniques/312263

http://www.igi-global.com/chapter/model-driven-development-multi-core/51980
http://www.irma-international.org/article/plant-leaf-disease-detection-using-cnn-algorithm/273224
http://www.irma-international.org/chapter/knowledge-management-and-quality-control-in-software-outsourcing-projects/294528
http://www.irma-international.org/chapter/architecture-integration-migration-information-systems/70609
http://www.irma-international.org/chapter/principle-engineering-service-based-system/55435
http://www.irma-international.org/article/a-systematic-literature-review-on-test-case-prioritization-techniques/312263

