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Abstract

Surrogate-assisted optimization frameworks are of great use in solving practical
computationally expensive process-design-optimization problems. In this chapter, a
framework for design optimization is introduced that makes use of neural-network-
based surrogates in lieu of actual analysis to arrive at optimum process parameters.
The performance of the algorithm is studied using a number of mathematical benchmarks
to instill confidence on its performance before reporting the results of a springback
minimization problem. The results clearly indicate that the framework is able to report
optimum designs with a substantially low computational cost while maintaining an
acceptable level of accuracy.
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Introduction

There are numerous problems in the area of process design in which a designer is faced
with the challenge to identify optimum process parameters that maximize one or more
performance measures while satisfying constraints posed by statutory requirements,
physical laws, and resource limitations. Currently, a vast majority of such applications
are guided by trial and error and user experience. Such problems are nontrivial to solve
as there are a large number of parameters that could be varied; the performance function
is highly nonlinear and computationally expensive as it often involves calculations
based on finite element methods (FEM), computational fluid dynamics (CFD), and so on.

Population-based, stochastic optimization methods like Genetic Algorithm (GA), Evolu-
tionary Algorithm (EA), Differential Evolution (DE), and Particle Swarm Optimization
(PSO) methods have been quite successful in solving highly nonlinear, mixed-variable
optimization problems. However, all the aforementioned methods are known to be
computationally expensive, as they need to sample numerous candidate solutions and
hence cannot be used outright to deal with optimum process-parameter-identification
problems involving computationally expensive simulations. In order to contain the
computational time within affordable limits, two schemes are usually adopted within a
population based stochastic algorithm, namely (a) use of multiple processors to evaluate
different candidate solutions and (b) use of approximations (surrogate models) in lieu of
actual expensive simulations.

In order to use approximations and surrogate models within an optimization framework,
one needs to decide on the following: (a) representation accuracy of the surrogate model
and (b) choice of a particular surrogate model. Surrogate models often have large
approximation errors and can introduce false optima (Jin, Olhofer, & Sendhoff, 2002).
Introduction of these false optima is a particularly serious problem when used in
conjunction with stochastic optimization methods like GAs and EAs as they could
converge incorrectly, referred to as ill-validation (Jin, Olhofer, & Sendhoff, 2000). The
problem of ill-validation is seldom addressed in the literature, and most reported
applications using approximate functions tend to use a once-for-all approximation
function throughout the course of optimization without even a check on the validity of
approximation at different stages of optimization (Jin et al., 2000). A naïve application of
the approximate model repeatedly without retraining may thus lead to incongruity
between the original and surrogate search spaces. Ratle (1998) suggested a heuristic
convergence criterion used to determine the retraining frequency based on the conver-
gence stability and the correlation between the actual and approximate function spaces.

The second issue relates to the choice of a surrogate model. The choice could range from
Quadratic Response Surfaces, artificial-neural-network- (ANN-) based approximators
like Multilayer Perceptrons (MLPs), Radial Basis Function Networks (RBFs), or
geostatistical methods like Kriging and Cokriging. ANN-based approximators, that is
MLPs and RBFs are particularly well suited for the present purpose as they are able to
capture nonlinear relationships and known to be universal function approximators
(Hornik, Stinchcombe, & White, 1989; Poggio & Girosi, 1989). An extensive discussion
of these two networks can be found in Haykin (1999).
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