
83

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-60960-797-5.ch005

Tugrul Esendal
De Montfort University, UK

Simon Rogerson
De Montfort University, UK

A Holistic Approach to Software
Engineering Education

ABSTRACT

This chapter introduces a final-year software engineering module that brings elements of software qual-
ity, professionalism, and ethics into one coherent teaching/learning unit.

The rationale for the module is simple. The evolution of Information Technology has led to software be-
ing pervasive in today’s society. Everyone is either a direct user of software or a recipient of its services.
This puts the spotlight on software engineers to deliver fit-for-purpose software that ensures beneficial
outcomes for all. However, this is not so easy to do, as evidenced by the many software disasters of
varying severity.

There is, consequently, a demand for professionalism of the highest order, which in turn demands a
new approach to software engineering education. It is the authors’ contention that a unified study of
software quality, professionalism, and ethics is the right approach, and such a holistic approach is a
crucial component in getting the best out of software engineering education.

These ideas were developed and refined in a compulsory 30-credit module for software engineering
and computer science students. The module employs a number of novel techniques in delivery and as-
sessment, as well as a number of online learning tools. These provide an exemplar environment of new
educational experiences for those preparing for a career in software engineering. Also included in this
chapter are summarised feedback ideas received from students and the experiences of the tutors deliv-
ering the module. This leads to a series of recommendations for future developments, which will be of
interest to all involved in software engineering education.

84

A Holistic Approach to Software Engineering Education

INTRODUCTION

Ubiquity of Software

How ubiquitous software has become! Not long
ago, data processing departments were the ex-
clusive users of software. They had large and
expensive computer systems on which to run their
applications, which were managed by teams of in-
formation technology professionals. Many people
did not even know what a computer looked like.

The arrival of personal computing changed all
this. First, the desktop computer brought infor-
mation technology into the home; and then, the
laptop computer made it an integral part of our
everyday lives. In parallel with that, the avail-
ability of processor chips put computing power
into everyday objects, from cars to mobile phones,
turning analogue devices into digital ones.

Nowadays, many objects rely on software to
deliver their services. For example, most music is
recorded, disseminated, and listened to on digital
equipment. In hospitals, specialised digital devices
monitor patients and help doctors to diagnose ail-
ments. Aeroplanes can now fly without pilots on
board. The common denominator in all of these
examples is software. National and regional gov-
ernments are another example. They have various
crucial responsibilities to their communities and
need complex computing systems to meet those
responsibilities. At the other end of the spectrum,
small organisations, with no in-house software
capabilities, use off-the-shelf commercial software
applications to process the data that underlie their
businesses.

Software Complexity and
Developer Responsibilities

The complexity of the service provided is neces-
sarily reflected in the complexity of the software
itself. Word processing is, in principle, a relatively
simple application; but, its complexity grows
when graphics and what you see is what you get

formatting capabilities are added. A system that
connects crime fighting agencies or one that takes
astronauts into space is far from simple. Moreover,
any software that may have health or safety impli-
cations (such as that in a nuclear power plant), or
one on which people rely for their well-being (like
that managing social security payments), must be
absolutely reliable, no matter how complex it is.

This places non-negotiable responsibilities on
all software engineers, in two areas:

1. 	 Software quality, to use the best tools and
techniques to deliver the best possible
products

2. 	 Professionalism and ethics, to ensure aware-
ness of all stakeholders in the deployment
of software and to safeguard their rights.

Software Disasters

The logical chain is straightforward: as our reliance
on software grows, so does the demand for good
software, which, in turn, requires good software
engineers, the responsibility for which falls on
educational institutions and specialist training
organisations.

However, over the last decade, there has been
a catalogue of system failures throughout the busi-
ness world that evidences the fact that software
development is not always being approached
in a holistic way. Many examples can be found
readily on the Internet, in response to the search
keywords software disaster. They are of varying
degrees of severity. Four significant examples are
summarised below:

1. 	 The launch of Airbus A380 was delayed by
a year or more in 2006 because of software
incompatibility problems. The wiring in one
part of the aircraft did not match the wiring
in another because the two parts were built
by different partners using different ver-
sions of their communications standards

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/holistic-approach-software-engineering-

education/54974

Related Content

A Holistic Approach to Software Engineering Education
Simon Rogerson (2011). Software Industry-Oriented Education Practices and Curriculum Development:

Experiences and Lessons (pp. 83-97).

www.irma-international.org/chapter/holistic-approach-software-engineering-education/54974

Development of Virtual Reality Tool for Creative Learning in Architectural Education
R.S. Kamath, T.D. Dongaleand R.K. Kamat (2012). International Journal of Quality Assurance in

Engineering and Technology Education (pp. 16-24).

www.irma-international.org/article/development-of-virtual-reality-tool-for-creative-learning-in-architectural-

education/83622

Conceptualizing ICT
 (2013). Challenging ICT Applications in Architecture, Engineering, and Industrial Design Education (pp. 1-

21).

www.irma-international.org/chapter/conceptualizing-ict/68728

Gender and Self-Selection Among Engineering Students
Maci Cookand Justin Chimka (2015). International Journal of Quality Assurance in Engineering and

Technology Education (pp. 14-21).

www.irma-international.org/article/gender-and-self-selection-among-engineering-students/134422

Enhancing Engineering Education Learning Outcomes Using Project-Based Learning: A Case

Study
Mousumi Debnathand Mukeshwar Pandey (2011). International Journal of Quality Assurance in

Engineering and Technology Education (pp. 23-34).

www.irma-international.org/article/enhancing-engineering-education-learning-outcomes/55875

http://www.igi-global.com/chapter/holistic-approach-software-engineering-education/54974
http://www.igi-global.com/chapter/holistic-approach-software-engineering-education/54974
http://www.irma-international.org/chapter/holistic-approach-software-engineering-education/54974
http://www.irma-international.org/article/development-of-virtual-reality-tool-for-creative-learning-in-architectural-education/83622
http://www.irma-international.org/article/development-of-virtual-reality-tool-for-creative-learning-in-architectural-education/83622
http://www.irma-international.org/chapter/conceptualizing-ict/68728
http://www.irma-international.org/article/gender-and-self-selection-among-engineering-students/134422
http://www.irma-international.org/article/enhancing-engineering-education-learning-outcomes/55875

