177

Chapter 8

Developing Software for a

Scientific Community:
Some Challenges and Solutions

Judith Segal
The Open University, UK

Chris Morris
STFC Daresbury Laboratory, UK

ABSTRACT

There are significant challenges in developing scientific software for a broad community. In this chapter,
we discuss how these challenges are somewhat different both from those encountered when a scientist
end-user developer develops software to address a very specific scientific problem of his/her own, and
from those encountered in many commercial developments. However, many developers of scientific com-
munity software are steeped in the culture of either scientific end-user or commercial development. As
we shall discuss herein, neither background provides sufficient experience so as to meet the challenges
of developing software for a scientific community. We make various proposals as to which development
approaches, methods, techniques and tools might be useful in this context, and just as importantly,

which might not.

INTRODUCTION

Many scientific software projects intended for a
broad scientific community succeed in that they
make a significant contribution to the science.
Many, however, fail. Some of these fail for sci-

DOI: 10.4018/978-1-61350-116-0.ch008

entific reasons (the underlying science was im-
perfectly understood), or because of coding
problems (for example, an inappropriate choice
of implementation language). Another less obvi-
ous cause of failure is the differences in the be-
haviour, knowledge, values, assumptions and
goals between three different groups of people
involved in such projects. These three groups are

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Developing Software for a Scientific Community

Table 1. Two snapshots from the first author's field studies:

Scientist: Anyone can develop software. Why should we listen to
the advice of a professional software developer?

(Professional software developer is deeply offended)

Professional software developer: We need to start off with a clear
document of your requirements, and then we’ll draw up a require-
ments specification document which you can check.

Scientist: But that simply isn’t how we work.

scientists; scientific end-user developers, that is
to say, scientists who are developing software for
their own use or for that of their close colleagues;
and professional software developers, to whom
the science is just another user domain.

In writing this chapter, we draw heavily on
the field studies conducted by the first author, an
academic, in a variety of scientific settings, and
on the many years’ experience developing scien-
tific software of the second author, a professional
software developer.

Our aims in writing this chapter are:

. To articulate some specific challenges fac-
ing scientific software developers. These
challenges have their origins either in the
culture of scientific end-user development
or in the nature of science itself.

e To suggest ways in which these challenges
might be addressed.

In what follows, we shall firstly articulate the
behaviour, knowledge, values, assumptions and
goals that characterize much scientific end-user
development and then discuss the challenges
which these characteristics pose when the context
ofthe developmentis broadened. We then go onto
discuss which development approaches, methods/
techniques and tools might be useful in scientific
software development, and, equally importantly,
identify some which will not. Finally, we discuss
how this identification of effective ways of sup-
porting scientific software development can be
progressed.

178

Throughout this paper, we stress the importance
of context. A couple of examples give a flavour
of this importance:

. A particular tool which is useful in a com-
mercial development context might not be
so useful in a scientific;

. Assumptions which are perfectly justified
in a setting where a scientist is developing
software for himself/herself to explore a
particular scientific question might not be
justified in other development settings.

This emphasis on the importance of context
means that it is difficult to set any hard-and-fast
rules along the lines of ‘scientific software devel-
opers should apply this testing technique to their
software’. We hope rather that this chapter might
provide the means by which you might recognise
the challenges in your particular development
context, and suggest some ways by which you
might address such challenges.

There is a caveat which we should stress here.
One chapter cannot possibly say all there is to say
about the challenges facing developers of software
for a scientific community. We focus here on
the challenges posed by the culture of scientific
end-user development, as revealed by our field
studies. These studies did not include FLOSS
developments (free libre open source software),
see the later section on future research directions.
We also took little cognisance of CSCW (computer
supported cooperative work) literature. We com-
ment further on this literature in the additional
reading section.



18 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/developing-software-scientific-community/60360

Related Content

Human-Computer Interaction and Artificial Intelligence: Multidisciplinarity Aiming Game
Accessibility

Sarajane Marques Peres, Clodis Boscarioli, Jorge Bidarraand Marcelo Fantinato (2012). Computer
Engineering: Concepts, Methodologies, Tools and Applications (pp. 1-18).

www.irma-international.org/chapter/human-computer-interaction-artificial-intelligence/62431

Conceptualizing Corporate Entrepreneurship Capability and Its Linkages Towards Firm
Performance

Rohit Kumarand Amit Kumar (2020). Disruptive Technology: Concepts, Methodologies, Tools, and
Applications (pp. 214-239).
www.irma-international.org/chapter/conceptualizing-corporate-entrepreneurship-capability-and-its-linkages-towards-firm-

performance/231189

Factors Influencing the Adoption of ISO/IEC 29110 in Thai Government Projects: A Case Study
Veeraporn Siddooand Noppachai Wongsai (2021). Research Anthology on Recent Trends, Tools, and
Implications of Computer Programming (pp. 1340-1366).
www.irma-international.org/chapter/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/261081

High-Level Decision Diagram Simulation for Diagnosis and Soft-Error Analysis

Jaan Raik, Urmas Repinski, Maksim Jenihhinand Anton Chepurov (2011). Design and Test Technology for
Dependable Systems-on-Chip (pp. 294-309).
www.irma-international.org/chapter/high-level-decision-diagram-simulation/51406

Fuzzy Logic for Non-smooth Dynamical Systems

Kamyar Mehran, Bashar Zahawiand Damian Giaouris (2011). Kansei Engineering and Soft Computing:
Theory and Practice (pp. 147-168).
www.irma-international.org/chapter/fuzzy-logic-non-smooth-dynamical/46396



http://www.igi-global.com/chapter/developing-software-scientific-community/60360
http://www.irma-international.org/chapter/human-computer-interaction-artificial-intelligence/62431
http://www.irma-international.org/chapter/conceptualizing-corporate-entrepreneurship-capability-and-its-linkages-towards-firm-performance/231189
http://www.irma-international.org/chapter/conceptualizing-corporate-entrepreneurship-capability-and-its-linkages-towards-firm-performance/231189
http://www.irma-international.org/chapter/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/261081
http://www.irma-international.org/chapter/high-level-decision-diagram-simulation/51406
http://www.irma-international.org/chapter/fuzzy-logic-non-smooth-dynamical/46396

