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INTRODUCTION

Molecular biology has undergone significant 
changes in the last decades. With the enormous 
amount of data generated by the genomic era, the 
qualitative reasoning about outcomes of experi-
ments showed inherent limitations. Mathematical 
models of cellular processes, such as signal trans-

duction (Alon, 2007) are becoming an essential 
aspect of molecular biology. The dynamic interac-
tions between biomolecules are encapsulated in 
equations of motion, where multiple biochemical 
parameters determine rates at which biomolecules 
are synthesized or degraded, at which they as-
sociate, dissociate, or are transformed into other 
biomolecules. Such equations of motion are often 
systems of ordinary differential equations (ODE) 
(Hairer et al., 1991), whose state variables are the 
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ABSTRACT

With the advances in measurement technology for molecular biology, predictive mathematical models of 
cellular processes come in reach. A large fraction of such models addresses the kinetics of interaction 
between biomolecules such as proteins, transcription factors, genes, and messenger RNA. In contrast to 
classical chemical kinetics – utilizing the reaction-rate equation – the small volume of cellular compart-
ments requires accounting for the stochasticity of chemical kinetics. In this chapter, we discuss methods 
to generate sample paths of this underlying stochastic process for situations where the well-stirredness 
or fast-diffusion assumption holds true. We introduce various approximations to exact simulation algo-
rithms that are more efficient in terms of computational complexity. Moreover, we discuss algorithms 
that account for the multi-scale nature of cellular reaction events.
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concentrations of each type of biomolecules – as 
it is done in classical chemical kinetics (Laidler, 
1987). Yet, some cellular components such as tran-
scription factors or mRNA molecules are present 
in very few copies and the continuous approach 
of ODEs falls short under these circumstances. 
Only a discrete approach capturing the stochastic 
nature of chemical events can properly describe 
such dynamics (Wilkinson, 2006; McQuarrie, 
1967). In this chapter, the formalism and the main 
algorithms to perform stochastic simulations of 
such continuous-time Markov jump processes 
will be explained. Such simulations are concerned 
with different time and length scales than classical 
molecular dynamics simulations. The available 
methods and implementations of the latter are 
not applicable to capture the reaction dynamics 
of large ensembles of biomolecules.

The remaining part of the chapter is organized 
as follows. The next section introduces the tradi-
tional law of mass action and the corresponding 
rate equations. A discussion on the Markov jump 
process associated with stochastic chemical kinet-
ics follows. Based on that, a Monte Carlo sampling 
algorithm developed by Gillespie (Gillespie, 
2007) along with its many variants is explained. 
Subsequently, the first approximate algorithm, the 
τ-leaping method is derived and some algorithmic 
aspects of it are highlighted. Further assumptions 
are made in the following section to obtain the 
chemical Langevin equation and its simulation is 
briefly discussed. Finally, we draw conclusions 
and give some outlook regarding this research 
area in the last section.

The Law of Mass Action

Chemical reactions, and as a consequence most 
events occurring in cellular processes, can be rep-
resented as transformations of molecular species 
Si ∈ {S1, …, Sn}. A reaction Rj, j∈{1,…,m} with a 
rate constant kj ∈ R+, is written in a general form as
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where Rij ∈ N0 is the stoichiometric coefficient for 
the species Si as a reactant and Pij ∈ N0 its coef-
ficient as a product (Heinrich and Schuster, 1996).

In the most simplified approach, all reactions 
of a process follow the law of mass action, 
originally proposed by Waage and Guldberg 
(1864): the rate of a reaction is the product of the 
concentration of the reactants and a constant. Thus 
the mass action rate function v j
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of reaction Rj is given by
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with k ≡ (k1, …, km)T and where the concentration 
of each species Si is denoted as zi(t), i∈{1,…,n}. 
The state of the system is thus the time function 
z : + +→ n .

With the stoichiometric matrix N ∈ ℤn×m, the 
element of which are Nij = Pij – Rij, that represents 
the net effect of reaction Rj on the species Si, the 
reaction rate equation can be written in vectorial 
form as

d
d
z Nv z k
t
= ( , ).  (3)

In case of reactions that do not follow mass 
action kinetics (i.e. simplifications as Michaelis-
Menten (Heinrich and Schuster, 1996)), equation 
(3) remains valid, but the reaction rate function 
cannot be expressed as equation (2).

Example: The Schlögl Reactions

As an illustration, the Schlögl reactions (Gillespie, 
1992) will be used. In this system, two species, 
B1 and B2, form a buffer and a third species, X, 
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