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ABSTRACT

With the advances in measurement technology for molecular biology, predictive mathematical models of
cellular processes come in reach. A large fraction of such models addresses the kinetics of interaction
between biomolecules such as proteins, transcription factors, genes, and messenger RNA. In contrast to
classical chemical kinetics — utilizing the reaction-rate equation — the small volume of cellular compart-
ments requires accounting for the stochasticity of chemical kinetics. In this chapter, we discuss methods
to generate sample paths of this underlying stochastic process for situations where the well-stirredness
or fast-diffusion assumption holds true. We introduce various approximations to exact simulation algo-
rithms that are more efficient in terms of computational complexity. Moreover, we discuss algorithms
that account for the multi-scale nature of cellular reaction events.

INTRODUCTION

Molecular biology has undergone significant
changes in the last decades. With the enormous
amount of data generated by the genomic era, the
qualitative reasoning about outcomes of experi-
ments showed inherent limitations. Mathematical
models of cellular processes, such as signal trans-
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duction (Alon, 2007) are becoming an essential
aspectofmolecularbiology. The dynamic interac-
tions between biomolecules are encapsulated in
equations of motion, where multiple biochemical
parameters determinerates at which biomolecules
are synthesized or degraded, at which they as-
sociate, dissociate, or are transformed into other
biomolecules. Such equations of motion are often
systems of ordinary differential equations (ODE)
(Hairer etal., 1991), whose state variables are the
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concentrations of each type of biomolecules — as
it is done in classical chemical kinetics (Laidler,
1987). Yet, some cellular components such as tran-
scription factors or mRNA molecules are present
in very few copies and the continuous approach
of ODEs falls short under these circumstances.
Only a discrete approach capturing the stochastic
nature of chemical events can properly describe
such dynamics (Wilkinson, 2006; McQuarrie,
1967). In this chapter, the formalism and the main
algorithms to perform stochastic simulations of
such continuous-time Markov jump processes
will be explained. Such simulations are concerned
with different time and length scales than classical
molecular dynamics simulations. The available
methods and implementations of the latter are
not applicable to capture the reaction dynamics
of large ensembles of biomolecules.

The remaining part of the chapter is organized
as follows. The next section introduces the tradi-
tional law of mass action and the corresponding
rate equations. A discussion on the Markov jump
process associated with stochastic chemical kinet-
ics follows. Based on that,a Monte Carlo sampling
algorithm developed by Gillespie (Gillespie,
2007) along with its many variants is explained.
Subsequently, the first approximate algorithm, the
t-leaping method is derived and some algorithmic
aspects of it are highlighted. Further assumptions
are made in the following section to obtain the
chemical Langevin equation and its simulation is
briefly discussed. Finally, we draw conclusions
and give some outlook regarding this research
area in the last section.

The Law of Mass Action

Chemical reactions, and as a consequence most
events occurring in cellular processes, can be rep-
resented as transformations of molecular species
S,€{S,,....S,}. AreactionR, j€{1,...,m} witha
rate constantk €R_,is written ina general formas
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where R.eN, is the stoichiometric coefficient for
the species S, as a reactant and PU_ € N, its coef-
ficientas a product (Heinrich and Schuster, 1996).

In the most simplified approach, all reactions
of a process follow the law of mass action,
originally proposed by Waage and Guldberg
(1864): the rate of a reaction is the product of the
concentration ofthe reactants and a constant. Thus
the mass action rate function v, R XR" = R,

of reaction R, is given by
T R
v (z,k) = ijzi , )

withk=(k,, ...,k )" and where the concentration
of each species S, is denoted as z(7), i€ {1,...,n}.
The state of the system is thus the time function
z:R, - R".

With the stoichiometric matrix N € Z"", the
element of which are N, i =P~ R that represents
the net effect of reaction R, on the species S, the
reaction rate equation can be written in vectorial
form as

dz
P Nv(zk). 3)

In case of reactions that do not follow mass
action kinetics (i.e. simplifications as Michaelis-
Menten (Heinrich and Schuster, 1996)), equation
(3) remains valid, but the reaction rate function
cannot be expressed as equation (2).

Example: The Schlogl Reactions
Asanillustration, the Schlogl reactions (Gillespie,

1992) will be used. In this system, two species,
B, and B, form a buffer and a third species, X,
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