
464

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.18

Song Jiang
Wayne State University, USA

Swap Token:
Rethink the Application of the

LRU Principle on Paging to
Remove System Thrashing

ABSTRACT

Most computer systems use the global page replacement policy based on the LRU principle to reduce
page faults. The LRU principle for the global page replacement dictates that a Least Recently Used
(LRU) page, or the least active page in a general sense, should be selected for replacement in the en-
tire user memory space. However, in a multiprogramming environment under high memory load, an
indiscriminate use of the principle can lead to system thrashing, in which all processes spend most of
their time waiting for the disk service instead of making progress. In this chapter, we will rethink the
application of the LRU principle on global paging to identify one of root causes for thrashing, and
describe a mechanism, named as swap token, to solve the issue. The mechnaim is simple in its design
and implementation but highly effective in alleviating or removing thrashing. A key feature of the swap
token mechanism is that it can distinguish the conditions for an LRU page, or a page that has not been
used for relatively long period of time, to be generated and accordingly categorize LRU pages into two
types: true and false LRU pages. The mechanism identifies false LRU pages to avoid use of the LRU
principle on these pages, in order to remove thrashing.

A prototype implementation of the swap token mechanism in the Linux kernel as well as some experiment
measurements are presented. The experiment results show that the mechanism can consistently reduce
the program execution slowdown in a multiprogramming environment including SPEC2000 programs
and other memory-intensive applications by up to 67%. The slowdown reductions mainly come from
reductions of up to 95% of total page faults during program interactions. This chapter also shows that
the mechanism introduces little overhead to program executions, and its implementations on Linux (and
Unix) systems are straightforward.

DOI: 10.4018/978-1-61350-456-7.ch2.18

465

Swap Token

INTRODUCTION

The virtual memory system allocates physical
memory to multiple concurrently running pro-
grams in a computer system through a global
page replacement algorithm, especially when
the aggregate memory demand is larger than
the available physical memory space. A com-
monly used replacement algorithm in a virtual
memory management is the global Least Recent
Used (LRU) replacement, which selects an LRU
memory page, or the least actively used page, for
replacement throughout the entire user memory
space of the system. According to the observed
common memory reference behavior, the LRU
replacement policy takes the assumption that a
page will not be used again in the near future if it
has not been accessed for a certain period of time.
In a single programming environment where only
one process is running at a time, this assumption
as well as the corresponding LRU principle, which
always selects LRU pages for replacement -- hold
well for many application programs, leading to an
efficient memory use for their execution. However,
as the assumption and the principle are directly
adopted in memory management designs and
implementations for multiprogramming systems,
many of computing practitioners can experience
following difficulty in their program executions.
When the aggregate memory demand of multiple
concurrently running programs exceeds the avail-
able user memory space to a certain degree, the
system starts thrashing --- none of the processes
are able to establish their working sets, causing
a large number of page faults in the system, low
CPU utilization, and a long delay for each process.
Although a large amount of CPU cycles are wasted
due to the excessive page faults in the shared use
of the memory, people seem to have accepted this
reality, and to believe that these additional cycles
are unavoidable due to the memory shortage and
due to the fairness requirement for the concur-
rently running programs.

As the LRU principle is based on access
patterns exhibited in one program’s execution,
a direct application of the principle on the con-
currently running programs is problematic and
may cause system thrashing. Let us take a close
look into the way an LRU replacement policy is
implemented in a multiprogramming system. An
allocated memory page of a process will become
a replacement candidate according to the LRU
principle if the page has not been accessed for
a certain period of time under two conditions:
(1) the process does not need to access the page;
and (2) the process is conducting page faults (a
sleeping process) so that it is not able to access
the page although it might have done so without
the page faults. We call the LRU pages generated
on the first condition true LRU pages, and those
on the second condition false LRU pages. These
false LRU pages are produced by the time delay of
page faults, not by the access delay of the process.
Therefore, this delay does not necessarily hint
that the page is not going to be accessed again
by the process soon, or the LRU assumption is
not applicable for the false LRU pages. However,
LRU page replacement implementations do not
distinguish these two types of LRU pages, and
treats them equally by attempting to replace any
LRU pages!

Whenever page faults occur due to memory
shortage in a multiprogramming environment,
false LRU pages of a process can be generated,
which will weaken the ability of the process to
achieve its working set. For example, if a process
does not access its already obtained memory
pages on the false LRU condition, these pages
may become replacement candidates (the LRU
pages) when the memory space is being demanded
by other processes. When the process is ready to
use these pages in its execution turn, these LRU
pages may have been replaced to satisfy memory
demands from other processes. The process then
has to ask the virtual memory system to retrieve
these pages back probably by generating and
replacing false LRU pages from other processes.

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/swap-token-rethink-application-lru/62459

Related Content

“We Still Don't Like You but We Want Your Money”: The Case of Chinese Migration to Australia
Mona Chungand Bruno Mascitelli (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications (pp. 1525-1535).

www.irma-international.org/chapter/we-still-dont-like-you-but-we-want-your-money/231254

Improving Lean, Service-Oriented Software Development at Codeweavers Ltd
Paul Shannon, Neil Kidd, Paul Barrett, Chris Knightand Sam Wessel (2013). Agile and Lean Service-

Oriented Development: Foundations, Theory, and Practice (pp. 255-268).

www.irma-international.org/chapter/improving-lean-service-oriented-software/70739

Establishing Academic-Industry Partnerships: A Transdisciplinary Research Model for

Distributed Usability Testing
Amber L. Lancasterand Dave Yeats (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 1286-1303).

www.irma-international.org/chapter/establishing-academic-industry-partnerships/261079

Fundamental Concepts
 (2019). Multi-Objective Stochastic Programming in Fuzzy Environments (pp. 27-77).

www.irma-international.org/chapter/fundamental-concepts/223802

Modeling Software Development Process Complexity
Vyron Damasiotis, Panos Fitsilisand James F. O'Kane (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 526-553).

www.irma-international.org/chapter/modeling-software-development-process-complexity/261041

http://www.igi-global.com/chapter/swap-token-rethink-application-lru/62459
http://www.irma-international.org/chapter/we-still-dont-like-you-but-we-want-your-money/231254
http://www.irma-international.org/chapter/improving-lean-service-oriented-software/70739
http://www.irma-international.org/chapter/establishing-academic-industry-partnerships/261079
http://www.irma-international.org/chapter/fundamental-concepts/223802
http://www.irma-international.org/chapter/modeling-software-development-process-complexity/261041

