948

Chapter 4.11

Formal Verification of a

Subset of UML Diagrames:
An Approach Using Maude

Allaoua Chaoui
University Mentouri Constantine, Algeria

Okba Tibermacine
University of Batna, Algeria

Amer R. Zerek
Engineering Academy, Libya

ABSTRACT

We introduce an approach that deals with the verification of UML collaboration and sequence diagrams
in respect to the objects internal behaviors which are commonly represented by state machine diagrams.
The approach is based on the translation of theses diagrams to Maude specifications. In fact, Maude is
a declarative programming language, an executable formal specification language, and also a formal
verification system, which permit the achievement of the approach goals. We define in details the rules
of translating UML diagrams elements into their corresponding Maude specifications. We present the
algebraic structures that represent the OR-States and the AND-states in a state machine diagram, and the
structure that represents the collaboration and the sequence diagrams. Also, we explain the mechanism of
the execution and the verification of the translated specification, which is based on rewriting logics rules.

INTRODUCTION

The Unified Modeling Language (UML) (Rum-
baugh, 1999) is widely used language for the
specification of object - oriented software systems,
including concurrent and embedded systems. An

DOI: 10.4018/978-1-61350-456-7.ch4.11

UML model is a set of diagrams describing and
documenting the structure, behavior and the usage
ofasoftware system. The UML casetoolsavailable
in today markets help designers to create models
and generate code automatically from specific
diagrams. Nevertheless, the most of these tools
do not offer methods for the verification neither
for the validation of these established diagrams,

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Formal Verification of a Subset of UML Diagrams

and this is due to the semantics of UML, which
are sometimes inadequate inrespect to the desired
behaviors.

The need of formal semantics was already
discussed by (France, 1998). Also, it’s recognized
that formal, unambiguous, yet readable account
of UML semantics would be very beneficial for
the language, the model verification, and in gen-
eral the oriented object software development.
Hence, a lot of emerged semantics approaches
attended to formalize the unified notation. They
focalized on the state machine diagram. Some
of these approaches are purely mathematical
models; some are rewriting based systems, and
some are translating approaches (Crane, 2005).
Generally, the translating approaches are based
on the transformation of the UML models into
formal pieces ready to be verified by model-
checking tools. Model checking (Clarke, 1999)
is well-studied technique of automatic formal
verification that ensures correctness of a given
specification. In literature, some approaches like
(Knapp, 2002), (Latella, 1999) and (Lilius, 1999)
rely on translating UML Models into languages
of model-checking to analyze and verify them.
The disadvantage of these approaches is that
the semantics model and the verification model
aren’t the same, and that due to the fact that some
model-checking languages like PROMELA/SPIN
or SMV are not truly formal languages (Compton,
2000) (Shen, 2002).

In this work, we propose an approach to Verify
UML collaboration diagrams against the behavior
represented by state machines. The verification
is performed after translating the UML model to

Figure 1. Class diagram

<<signal>> PINVenfied
<<signal>> reenterPIN
<<signal>> abort

ATM Link

a formal rewriting logic specification within the
Maude language. Maude supports declarative
programming and executable formal specifica-
tions. Inductive theorem proving, model-checking
and other formal analysis are either supported by
Maude and its formal environment (Meseguer,
2002).

Therest ofthis chapteris organized as follows;
in section 2, we recall some basic definitions of
UML classes, state machine and collaboration
diagrams. In section 3, we present rewriting logic
and Maude language. In section 4, we present
the verification of UML using Maude. In section
5, we discuss features of translation and UML
models elements. In section 6, we talk about the
verification of the specification and the last section
concludes the work and gives some perspectives.

UML CLASS, STATE MACHINE, AND
COLLABORATION DIAGRAMS

The basic element for modeling oriented object
systems is the active object. An active object has
its own thread of control and runs in concurrency
with other active objects. A UML class diagram
may represent classes of active objects and as-
sociations between them.

In this paper we use a simple model of an Au-
tomatic Teller Machine (ATM), as it’s represented
in (Knapp, 2002). Figure 1 shows a class diagram
that specifies two active classes ATM and Bank.
The association between the two classes rely an
instance of Bank to an instance of ATM, and vice
versa. Classes define attributes, operations and

Bank

boolean cardValid=tre
int numIncomect=0
int maxNumincorrect =2

VenifyPIN()
<<signal>> done

949



9 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/formal-verification-subset-uml-diagrams/62490

Related Content

The Heart and Brain of SDN: SDN Controllers

Pranav Arora (2018). Innovations in Software-Defined Networking and Network Functions Virtualization
(pp. 100-126).

www.irma-international.org/chapter/the-heart-and-brain-of-sdn/198195

The Rate of Adoption in Households and Organizations: A Comparative Study

Henrik Vejlgaard (2019). Handbook of Research on Technology Integration in the Global World (pp. 373-
388).

www.irma-international.org/chapter/the-rate-of-adoption-in-households-and-organizations/208806

People: Communicating in Teams
(2019). Software Engineering for Enterprise System Agility: Emerging Research and Opportunities (pp.
169-179).

www.irma-international.org/chapter/people/207087

SoC Self Test Based on a Test-Processor

Tobial Koal, Rene Kotheand Heinrich Theodor Vierhaus (2011). Design and Test Technology for
Dependable Systems-on-Chip (pp. 360-376).
www.irma-international.org/chapter/soc-self-test-based-test/51409

Bounded Rationality and Market Micro-Behaviors: Case Studies Based on Agent-Based Double
Auction Markets

Shu-Heng Chen, Ren-Jie Zeng, Tina Yuand Shu G. Wang (2012). Computer Engineering: Concepts,
Methodologies, Tools and Applications (pp. 1352-1369).

www.irma-international.org/chapter/bounded-rationality-market-micro-behaviors/62516



http://www.igi-global.com/chapter/formal-verification-subset-uml-diagrams/62490
http://www.irma-international.org/chapter/the-heart-and-brain-of-sdn/198195
http://www.irma-international.org/chapter/the-rate-of-adoption-in-households-and-organizations/208806
http://www.irma-international.org/chapter/people/207087
http://www.irma-international.org/chapter/soc-self-test-based-test/51409
http://www.irma-international.org/chapter/bounded-rationality-market-micro-behaviors/62516

