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ABSTRACT

In this chapter, the authors present an overview of the utility of distributed storage systems in supporting 
modern applications that are increasingly becoming data intensive. Their coverage of distributed storage 
systems is based on the requirements imposed by data intensive computing and not a mere summary of 
storage systems. To this end, they delve into several aspects of supporting data-intensive analysis, such 
as data staging, offloading, checkpointing, and end-user access to terabytes of data, and illustrate the 
use of novel techniques and methodologies for realizing distributed storage systems therein. The data 
deluge from scientific experiments, observations, and simulations is affecting all of the aforementioned 
day-to-day operations in data-intensive computing. Modern distributed storage systems employ techniques 
that can help improve application performance, alleviate I/O bandwidth bottleneck, mask failures, and 
improve data availability. They present key guiding principles involved in the construction of such storage 
systems, associated tradeoffs, design, and architecture, all with an eye toward addressing challenges of 
data-intensive scientific applications. They highlight the concepts involved using several case studies of 
state-of-the-art storage systems that are currently available in the data-intensive computing landscape.
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DATA INTENSIVE COMPUTING 
CHALLENGES

The advent of extreme-scale computing systems, 
e.g., Petaflop supercomputers, cyber-infrastruc-
ture, e.g., TeraGrid, and experimental facilities 
such as large-scale particle colliders, are pushing 
the envelope on dataset sizes. Supercomputing 
centers routinely generate huge amounts of data, 
resulting from high-throughput computing jobs. 
These are often result-datasets or checkpoint 
snapshots from long-running simulations. For 
example, the Jaguar petaflop machine (National 
Center for Computational Sciences [NCCS], 2009) 
at Oak Ridge National Laboratory, which is No.2 
in the Top 500 supercomputers as of this writing, 
is generating terabytes of user data while support-
ing a wide-spectrum of science applications in 
Fusion, Astrophysics, Climate and Combustion. 
Another example is the TeraGrid, which hosts 
some of NSF’s most powerful supercomputers 
such as Kraken (National Institute of Computa-
tional Sciences [NICS], 2008) at the University 
of Tennessee, Ranger (Sun constellation linux 
cluster, 2008) at Texas Advanced Supercomputing 
Center and Blue Waters at National Center for Su-
percomputing Applications, and are well on their 
way to produce large amounts of data. Accessing 
these national user facilities is a geographically 
distributed user-base with varied end-user con-
nectivity, resource availability, and application 
requirements. At the same time, experimentation 
facilities such as the Large Hadron Collider (LHC) 
(Conseil Europ’een pour la Recherche Nucl’eaire 
[CERN], 2007) or the Spallation Neutron Source 
(SNS) (Spallation Neutron Source [SNS], 2008; 
Cobb et al., 2007] will generate petabytes of 
data. These large datasets are processed by a 
geographically dispersed user-base, often times, 
on high-end computing systems. Therefore, result 
output data from High-Performance Computing 
(HPC) simulations are not the only source that is 
driving dataset sizes. Input data sizes are growing 
many folds as well (SNS, 2008; CERN, 2007; 

Sloan digital sky survey [SDSS], 2005; Laser 
Interferometer Gravitational-Wave Observatory 
[LIGO], 2008).

In addition to these high-end systems, com-
modity clusters are prevalent and the data they can 
process is growing manifold. Most universities and 
organizations host mid-sized clusters, comprising 
of hundreds of nodes. A distributed user base comes 
to these machines for a variety of data intensive 
analyses. In some cases, compute intensive op-
erations are performed at supercomputing sites, 
while post-processing is conducted at local clusters 
or high-end workstations at end-user locations. 
Such a distributed user analysis workflow entails 
intensive I/O. Consequently, these systems will 
need to support: (i) the staging in of large input 
data from end-user locations, archives, experi-
mental facilities and other compute centers; (ii) 
the staging out terabytes of output, intermediate 
and checkpoint snapshot data to end-user locations 
or other compute destinations (iii) the ability to 
checkpoint terabytes of data at periodic intervals 
for a long-running computation; (iv) the ability 
to support high-speed reads to support a running 
application.

In the discussion below, we will high light 
these key data intensive operations, the state-of-
the-art and the challenges and gaps there in to set 
the stage for how distributed storage systems can 
help in optimizing them.

Data Staging and Offloading

Large input, output and checkpoint data is required 
to be staged in and out of these systems. With the 
exponential growth in application input and output 
data sizes, it is impractical to store all user data 
indefinitely at HPC centers. Traditionally, centers 
have operated under the premise that users come 
to them with all of their storage and computing 
needs. The legacy of this approach still weighs 
heavily when it comes to provisioning a center 
as significant portions of the operational budget 
is spent on large data stores and archives. End-
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