
288

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Yingxu Wang
University of Calgary, Canada

Xinming Tan
Wuhan University of Technology, China

Cyprian F. Ngolah
Sentinel Trending & Diagnostics Ltd., Canada

Phillip C.-Y. Sheu
University of California, Irvine, USA

The Formal Design Models
of a Set of Abstract
Data Types (ADTs)

ABSTRACT

Type theories are fundamental for underpinning data object modeling and system architectural design
in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and
rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO)
technologies for software system design and implementation. This paper presents a formal modeling
methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural
and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and
dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs
are created using RTPA architectural modeling methodologies known as the Unified Data Models
(UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models
(UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies
of RTPA. This work has been applied in a number of real-time and non-real-time system designs such
as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic
code generator based on RTPA.

DOI: 10.4018/978-1-4666-0264-9.ch016

289

The Formal Design Models of a Set of Abstract Data Types (ADTs)

INTRODUCTION

Computational operations can be classified into the
categories of data object, behavior, and resource
modeling and manipulations. Based on this view,
programs are perceived as a coordination of the
data objects and behaviors in computing. Data
object modeling is a process to creatively extract
and abstractly represent a real-world problem by
data models based on the constraints of given
computing resources.

Using types to model real-world entities can
be traced back to the mathematical thought of
Bertrand Russell (Russell, 1903) and Georg Cantor
in 1932 (Lipschutz & Lipson, 1997). A type is a
category of variables that share a common property
such as the kind of data, domain, and allowable
operations. Types are an important logical property
shared by data objects in programming (Cardelli
& Wegner, 1985; Mitchell, 1990). Although data
in their most primitive form is a string of bits,
types are found expressively convenient for data
representation at the logical level in programming.
Type theory can be used to prevent computational
operations on incompatible operands, to help
software engineers to avoid obvious and not so
obvious pitfalls, and to improve regularity and
orthogonality in programming language design.

Definition 1. A data type, shortly a type, is a set
in which all member data objects share a
common logical property or attribute.

The mathematical foundation of types is set
theory. The maximum range of values that a vari-
able can assume is a type, and a type is associated
with a set of predefined or allowable operations.
Methodologies of types and their properties
have been defined in Real-Time Process Algebra
(RTPA) (Wang, 2002, 2008a, 2008b, 2008c),
where 17 primitive types in computing and
software engineering have been elicited (Wang,
2007). A type can be classified as either primitive
or derived (complex) types. The former is the most

elementary types that cannot further be divided
into more simple ones; the latter is a compound
form of multiple primitive types based on certain
type rules. Most primitive types are provided by
programming languages; while most user defined
types are derived ones.

A type system specifies data object modeling
and manipulation rules of a programming lan-
guage, as that of a grammar system that specifies
program syntaxes and composing rules of the
language. Therefore, the generic complex types
can be modeled by abstract data types (Guttag,
1977; Broy et al., 1984), which are a logical model
of a complex and/or user defined data type with
a set of predefined operations.

Definition 2. An Abstract Data Type (ADT) is an
abstract model of data objects with a formal
encapsulation of the logical architecture and
valid operations of the data object.

An ADT encapsulates a data structure and pres-
ents the user with an interface through which data
can be accessed. It exports a type, a set of valid
operations, and any axioms and preconditions that
define the application domain of the ADT. ADTs
extend type construction techniques by encapsulat-
ing both data structures and functional behaviors.
The interface and implementation of an ADT can
be separated in design and implementation. Based
on the models of ADTs as generic data structures,
concrete data objects can be derived in computing.

A number of ADTs have been identified in
computing and system modeling such as stack,
queue, sequence, record, array, list, tree, file, and
graph (Wang, 2007). A summary of the ten typical
ADTs is provided in Table 1 where the structures
and behaviors of the ADTs are described. ADTs
possess the following properties: (i) An extension
of type constructions by integrating both data
structures and functional behaviors; (ii) A hybrid
data object modeling technique that encapsulates
both user defined data structures (types) and al-
lowable operations on them; (iii) The interface

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-design-models-set-abstract/64614

Related Content

Sustainable Stock Market Prediction Framework Using Machine Learning Models
Francisco José García Peñalvo, Tamanna Maan, Sunil K. Singh, Sudhakar Kumar, Varsha Arya, Kwok Tai

Chuiand Gaurav Pratap Singh (2022). International Journal of Software Science and Computational

Intelligence (pp. 1-15).

www.irma-international.org/article/sustainable-stock-market-prediction-framework-using-machine-learning-

models/313593

Cognitive Computational Models of Emotions and Affective Behaviors
Luis-Felipe Rodríguez, Félix Ramosand Yingxu Wang (2012). International Journal of Software Science

and Computational Intelligence (pp. 41-63).

www.irma-international.org/article/cognitive-computational-models-emotions-affective/72879

The Formal Design Model of a Telephone Switching System (TSS)
Yingxu Wang (2009). International Journal of Software Science and Computational Intelligence (pp. 92-

116).

www.irma-international.org/article/formal-design-model-telephone-switching/34091

A Novel Fuzzy Rule Guided Intelligent Technique for Gray Image Extraction and Segmentation
Koushik Mondal (2013). Handbook of Research on Computational Intelligence for Engineering, Science,

and Business (pp. 163-181).

www.irma-international.org/chapter/novel-fuzzy-rule-guided-intelligent/72492

Practical Considerations in Automatic Code Generation
Paul Dietz, Aswin van den Berg, Kevin Marth, Thomas Weigertand Frank Weil (2007). Advances in

Machine Learning Applications in Software Engineering (pp. 346-408).

www.irma-international.org/chapter/practical-considerations-automatic-code-generation/4867

http://www.igi-global.com/chapter/formal-design-models-set-abstract/64614
http://www.irma-international.org/article/sustainable-stock-market-prediction-framework-using-machine-learning-models/313593
http://www.irma-international.org/article/sustainable-stock-market-prediction-framework-using-machine-learning-models/313593
http://www.irma-international.org/article/cognitive-computational-models-emotions-affective/72879
http://www.irma-international.org/article/formal-design-model-telephone-switching/34091
http://www.irma-international.org/chapter/novel-fuzzy-rule-guided-intelligent/72492
http://www.irma-international.org/chapter/practical-considerations-automatic-code-generation/4867

