
130

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

INTRODUCTION

A vulnerable program can be exploited at runtime
by providing specially crafted inputs. Buffer over-
flow (BOF) is a well known and one of the worst
and oldest vulnerabilities in programs (Aleph One,
1996). It allows attackers to overflow data buffers

that might be exploited to execute arbitrary code.
Several mitigation techniques are widely used to
mitigate BOF vulnerabilities. These include static
analysis (e.g., Hackett et al., 2006), testing (e.g.,
Xu et al., 2008), and fixing of vulnerable code
(e.g., Dahn et al., 2003). However, BOF vulner-
abilities are widely discovered in programs (e.g.,

Hossain Shahriar
Queen’s University, Canada

Mohammad Zulkernine
Queen’s University, Canada

Monitoring Buffer
Overflow Attacks:

A Perennial Task

ABSTRACT

Buffer overflow (BOF) is a well-known, and one of the worst and oldest, vulnerabilities in programs.
BOF attacks overwrite data buffers and introduce wide ranges of attacks like execution of arbitrary
injected code. Many approaches are applied to mitigate buffer overflow vulnerabilities; however, miti-
gating BOF vulnerabilities is a perennial task as these vulnerabilities elude the mitigation efforts and
appear in the operational programs at run-time. Monitoring is a popular approach for detecting BOF
attacks during program execution, and it can prevent or send warnings to take actions for avoiding the
consequences of the exploitations. Currently, there is no detailed classification of the proposed monitor-
ing approaches to understand their common characteristics, objectives, and limitations. In this paper,
the authors classify runtime BOF attack monitoring and prevention approaches based on seven major
characteristics. Finally, these approaches are compared for attack detection coverage based on a set of
BOF attack types. The classification will enable researchers and practitioners to select an appropriate
BOF monitoring approach or provide guidelines to build a new one.

DOI: 10.4018/978-1-4666-1580-9.ch008

131

Monitoring Buffer Overflow Attacks

CVE, 2010). Moreover, some BOF vulnerability
exploitations (or attacks) might not appear until a
program is operational. Thus, BOF attack detec-
tion is a perennial task.

Monitoring is a widely used technique that can
detect BOF attacks at an early stage and mitigate
some of the consequences at runtime. In a monitor-
ing approach, vulnerability exploitation symptoms
are checked by comparing the current state of a
program with a known state under attack. When
there is a match (or mismatch) between the two
states, a successful exploitation of a particular
vulnerability occurs. A program might be stopped
for further execution. A monitor remains silent as
long as a program is not under an attack at the
cost of additional memories and execution time
(e.g., Jones et al., 1997). Nevertheless, a program
monitor is accurate in detecting attacks compared
to other complementary mitigation techniques
such as static analysis. This unique feature makes
it a useful prevention mechanism in a deployed
program.

Although many monitoring approaches have
been introduced in the literature to detect the
exploitations of BOF vulnerabilities (or attacks)
(e.g., Berger et al., 2006; Chiueh et al., 2001),
there is no classification to understand the com-
mon characteristics, objectives, and limitations of
these approaches. Moreover, the lack of a com-
prehensive comparative study provides little or no
direction on choosing the appropriate monitoring
techniques for particular needs.

In this paper, we perform an extensive survey on
the state of the art runtime monitoring approaches
that detect BOF attacks1. We classify the moni-
toring approaches based on seven most common
characteristics: monitoring objective, program
state utilization, implementation mechanism,
environmental change, attack response, monitor
security, and overhead. Moreover, for each of
the characteristics, we further classify the current
work to identify fine grained features that might
be present in BOF monitoring techniques. We
then perform a comparative analysis of existing

approaches for BOF attack detection coverage.
We identify BOF attack types based on both
vulnerable program code (operation, data type,
overflow among object members, and pointer
arithmetic) and runtime state (BOF location, BOF
magnitude). The survey will help secure software
developers, researchers, and practitioners to select
a tool from the existing monitoring approaches by
highlighting the BOF attack type detection capa-
bilities. Moreover, it will provide a guideline to
build a new monitoring technique based on their
particular application needs.

This paper is organized as follows: the next
section provides an overview of program monitor
and BOF attack. Then we discuss the classification
of the monitoring works followed by comparison
of the works based on BOF attack types. We then
review other similar efforts on comparing BOF
attack monitoring approaches. Finally, we draw
conclusions.

OVERVIEW

Program Monitor

In general, a program takes inputs, processes them
with or without the help of runtime environment
(e.g., API calls), and generates outputs as shown
in Figure 1(a). A program monitor is deployed in a
post-release stage. It provides an additional layer
between a program and its execution environment
(Figure 1(b)). A monitor passively checks runtime
program states for the occurrence of attacks. The
underlying assumption is that attack symptoms can
be captured by program states. Program states are
entities involved in program execution such as pro-
gram memories containing modified (or unmodi-
fied) inputs and outputs, registers, opcode, and
attribute of inputs (e.g., sizes). While executing,
program states are captured at specific execution
points (e.g., beginning of a function call, return
from a function) and matched with known states
under attacks. Any match (or mismatch) might

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/monitoring-buffer-overflow-attacks/65846

Related Content

Intuitionistic Fuzzy Decision Making Towards Efficient Team Selection in Global Software

Development
Mukta Goyaland Chetna Gupta (2022). Research Anthology on Agile Software, Software Development, and

Testing (pp. 1756-1775).

www.irma-international.org/chapter/intuitionistic-fuzzy-decision-making-towards-efficient-team-selection-in-global-

software-development/294542

Business Survival Inside and Outside of Chinese IT clusters
Yixuan Wangand Bowen Jiang (2018). International Journal of Systems and Service-Oriented Engineering

(pp. 1-15).

www.irma-international.org/article/business-survival-inside-and-outside-of-chinese-it-clusters/213951

A Visual Approach to Business IT Alignment between Business Model and Enterprise

Architecture
Boris Fritscherand Yves Pigneur (2015). International Journal of Information System Modeling and Design

(pp. 1-23).

www.irma-international.org/article/a-visual-approach-to-business-it-alignment-between-business-model-and-enterprise-

architecture/123605

Service-Oriented Enterprise Architecture
Maarten W.A. Steen, Patrick Strating, Marc M. Lankhorst, Hugo W.L. ter Doestand Maria-Eugenia Iacob

(2005). Service-Oriented Software System Engineering: Challenges and Practices (pp. 132-154).

www.irma-international.org/chapter/service-oriented-enterprise-architecture/28953

A Graphical User Interface (GUI) Testing Methodology
Zafar Singhera, Ellis Horowitzand Abad Shah (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 3037-3054).

www.irma-international.org/chapter/graphical-user-interface-gui-testing/29549

http://www.igi-global.com/chapter/monitoring-buffer-overflow-attacks/65846
http://www.irma-international.org/chapter/intuitionistic-fuzzy-decision-making-towards-efficient-team-selection-in-global-software-development/294542
http://www.irma-international.org/chapter/intuitionistic-fuzzy-decision-making-towards-efficient-team-selection-in-global-software-development/294542
http://www.irma-international.org/article/business-survival-inside-and-outside-of-chinese-it-clusters/213951
http://www.irma-international.org/article/a-visual-approach-to-business-it-alignment-between-business-model-and-enterprise-architecture/123605
http://www.irma-international.org/article/a-visual-approach-to-business-it-alignment-between-business-model-and-enterprise-architecture/123605
http://www.irma-international.org/chapter/service-oriented-enterprise-architecture/28953
http://www.irma-international.org/chapter/graphical-user-interface-gui-testing/29549

