
152

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

INTRODUCTION

As the Internet has grown in popularity, security
testing is undoubtedly becoming a crucial part of
the development process for commercial software,
especially for server applications. However, it is

impossible in terms of time and cost to test all
configurations or to simulate all system environ-
ments before releasing the software into the field,
not to mention the fact that software distributors
may later add more configuration options. The
configuration of a software system is a set of

Huning Dai
Columbia University, USA

Christian Murphy
Columbia University, USA

Gail Kaiser
Columbia University, USA

CONFU:
Configuration Fuzzing Testing Framework

for Software Vulnerability Detection

ABSTRACT

Many software security vulnerabilities only reveal themselves under certain conditions, that is, particular
configurations and inputs together with a certain runtime environment. One approach to detecting these
vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic
and semantic validity of the input, or of how much of the input space will be explored. To address these
problems, the authors present a new testing methodology called Configuration Fuzzing. Configuration
Fuzzing is a technique whereby the configuration of the running application is mutated at certain
execution points to check for vulnerabilities that only arise in certain conditions. As the application
runs in the deployment environment, this testing technique continuously fuzzes the configuration and
checks “security invariants’’ that, if violated, indicate vulnerability. This paper discusses the approach
and introduces a prototype framework called ConFu (CONfiguration FUzzing testing framework) for
implementation. Additionally, the results of case studies that demonstrate the approach’s feasibility are
presented along with performance evaluations.

DOI: 10.4018/978-1-4666-1580-9.ch009

153

CONFU

options that are responsible for a user’s prefer-
ences and the choice of hardware, functionality,
etc. Sophisticated software systems always have
a large number of possible configurations, e.g., a
recent version of Firefox has more than 230 possible
configurations, and testing all of them is infea-
sible before the release. Fuzz testing as a form of
black-box testing was introduced to address this
problem (Sutton et al., 2007), and empirical stud-
ies (Jurani, 2006) have proven its effectiveness
in revealing vulnerabilities in software systems.
Yet, typical fuzz testing has been inefficient in two
aspects. First, it is poor at exposing certain errors,
as most generated inputs fail to satisfy syntactic
or semantic constraints and therefore cannot ex-
ercise deeper code. Second, given the immensity
of the input space, there are no guarantees as to
how much of it will be explored (Clarke, 2009).

To address these limitations, this paper presents
a new testing methodology called Configuration
Fuzzing, and a prototype framework called ConFu
(CONfiguration FUzzing framework). Instead of
generating random inputs that may be semantically
invalid, ConFu mutates the application configura-
tion in a way that helps valid inputs exercise the
deeper components of the software-under-test and
check for violations of program-specific “security
invariants” (Biskup, 2009). These invariants rep-
resent rules that, if broken, indicate the existence
of a vulnerability. Examples of security invariants
may include: avoiding memory leakage that may
lead to denial of service; a user should never gain
access to files that do not belong to him; critical
data should never be transmitted over the Internet;
only certain sequences of function calls should be
allowed, etc. ConFu mutates the configuration
using the incremental covering array approach
(Fouche et al., 2009), therefore guaranteeing
considerable coverage of the configuration space
in the lifetime of a certain release of the software.

Configuration Fuzzing works as follows:
Given an application to test, the testers annotate
the variables to be fuzzed in the configuration file

and choose the functions to test. If needed, they
can write additional surveillance functions for
specific security invariants other than the built-in
ones provided by our default implementation. The
framework then generates the actual code for a
fuzzer that mutates the values of the chosen con-
figuration variables, as well as the test functions
for each chosen function. Next, the framework
creates instrumentation such that whenever a
chosen function is called, the corresponding test
function is executed in a sandbox with the mu-
tated configuration and the security invariants are
checked. Violations of these security invariants
are logged and sent back to the developer.

Configuration Fuzzing is based on the observa-
tion that most vulnerabilities occur under specific
configurations with certain inputs (Ramakrishnan
& Sekar, 2002), i.e., an application running with
one configuration may prevent the user from
doing something bad, while another might not.
Configuration Fuzzing occurs within software
as it runs in the deployment environment. This
allows it to conduct tests in application states and
environments that may not have been conceived
in the lab. In addition, the effectiveness of ConFu
is increased by using real-world user inputs rather
than randomly generated ones. However, the
fuzzing of the configuration occurs in an isolated
“sandbox” that is created as a clone of the original
process, so that it does not affect the end user of
the program. When a vulnerability is detected,
detailed information is collected and sent back
to a server for later analysis.

The rest of this paper is organized as follows.
The problem statement, and identifies require-
ments that a solution must meet is formalized. The
next section discusses the background, proposes
the Configuration Fuzzing approach, and provides
the architecture of the framework called ConFu.
The results of our case studies and performance
evaluation are then examined. Related work is
then discussed. The paper ends with limitations
and a conclusion.

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/confu-configuration-fuzzing-testing-

framework/65847

Related Content

An Investigation into the Impact of Ethnicity and Culture on the Motivation for using Facebook for

Academics and Socialization in Guam
Sathasivam Mathiyalakan, Kevin K.W. Ho, George E. Heilmanand Wai K. Law (2017). International Journal

of Systems and Service-Oriented Engineering (pp. 1-21).

www.irma-international.org/article/an-investigation-into-the-impact-of-ethnicity-and-culture-on-the-motivation-for-using-

facebook-for-academics-and-socialization-in-guam/201205

Model Checking of Multitasking Real-Time Applications Based on the Timed Automata Model

Using One Clock
Libor Wasziwoskiand Zdenek Hanzalek (2010). Behavioral Modeling for Embedded Systems and

Technologies: Applications for Design and Implementation (pp. 194-218).

www.irma-international.org/chapter/model-checking-multitasking-real-time/36343

Adding More Agility to Software Product Line Methods: A Feasibility Study on Its Customization

Using Agile Practices
Kun Tian (2018). Application Development and Design: Concepts, Methodologies, Tools, and Applications

(pp. 1294-1311).

www.irma-international.org/chapter/adding-more-agility-to-software-product-line-methods/188257

Structural Relationship Between Environmental Uncertainty, Organizational Agility, and Business

Performance in SMMEs
Donghyuk Joand Yong-Sun Seo (2022). International Journal of Software Innovation (pp. 1-12).

www.irma-international.org/article/structural-relationship-between-environmental-uncertainty-organizational-agility-and-

business-performance-in-smmes/304879

Determining Optimal Release and Testing Stop Time of a Software Using Discrete Approach
Avinash K. Shrivastavaand Ruchi Sharma (2022). International Journal of Software Innovation (pp. 1-13).

www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-

approach/297920

http://www.igi-global.com/chapter/confu-configuration-fuzzing-testing-framework/65847
http://www.igi-global.com/chapter/confu-configuration-fuzzing-testing-framework/65847
http://www.irma-international.org/article/an-investigation-into-the-impact-of-ethnicity-and-culture-on-the-motivation-for-using-facebook-for-academics-and-socialization-in-guam/201205
http://www.irma-international.org/article/an-investigation-into-the-impact-of-ethnicity-and-culture-on-the-motivation-for-using-facebook-for-academics-and-socialization-in-guam/201205
http://www.irma-international.org/chapter/model-checking-multitasking-real-time/36343
http://www.irma-international.org/chapter/adding-more-agility-to-software-product-line-methods/188257
http://www.irma-international.org/article/structural-relationship-between-environmental-uncertainty-organizational-agility-and-business-performance-in-smmes/304879
http://www.irma-international.org/article/structural-relationship-between-environmental-uncertainty-organizational-agility-and-business-performance-in-smmes/304879
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920

