
169

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

DOI: 10.4018/978-1-4666-1580-9.ch010

INTRODUCTION

SQL injection attacks (SQLIAs) are one of the
foremost threats to Web applications (Halfond,
Viegas, & Orso, 2006). According to the WASP
Foundation, injection flaws, particularly SQL
injection, were the second most serious type of

Web application vulnerability in 2008 (OWASP,
2008). The threats posed by SQLIAs go beyond
simple data manipulation. Through SQLIAs, an
attacker may also bypass authentication, escalate
privileges, execute a denial-of-service attack, or
execute remote commands to transfer and install
malicious software. As a consequence of SQLIAs,

San-Tsai Sun
University of British Columbia, Canada

Konstantin Beznosov
University of British Columbia, Canada

Retrofitting Existing Web
Applications with Effective
Dynamic Protection Against

SQL Injection Attacks

ABSTRACT

This paper presents an approach for retrofitting existing Web applications with run-time protection
against known, as well as unseen, SQL injection attacks (SQLIAs) without the involvement of application
developers. The precision of the approach is also enhanced with a method for reducing the rate of false
positives in the SQLIA detection logic, via runtime discovery of the developers’ intention for individual
SQL statements made by Web applications. The proposed approach is implemented in the form of pro-
tection mechanisms for J2EE, ASP.NET, and ASP applications. Named SQLPrevent, these mechanisms
intercept HTTP requests and SQL statements, mark and track parameter values originating from HTTP
requests, and perform SQLIA detection and prevention on the intercepted SQL statements. The AMNESIA
testbed is extended to contain false-positive testing traces, and is used to evaluate SQLPrevent. In our
experiments, SQLPrevent produced no false positives or false negatives, and imposed a maximum 3.6%
performance overhead with 30 milliseconds response time for the tested applications.

170

Retrofitting Existing Web Applications with Effective Dynamic Protection Against SQL Injection Attacks

parts of entire organizational IT infrastructures can
be compromised. As a case in point, SQLIAs were
apparently employed by Ehud Tenenbaum, who
has been arrested on charges of stealing $1.5M
from Canadian and at least $10M from U.S. banks
(Zetter, 2009). An effective and easy to employ
method for protecting numerous existing Web ap-
plications from SQLIAs is crucial for the security
of today’s organizations.

State-of-the-practice SQLIA countermeasures
are far from effective (Anley, 2002) and many
Web applications deployed today are still vulner-
able to SQLIAs (OWASP, 2008). SQLIAs are
performed through HTTP traffic, sometimes over
SSL, thereby making network firewalls ineffec-
tive. Defensive coding practices require training
of developers and modification of the legacy ap-
plications to assure the correctness of validation
routines and completeness of the coverage for all
sources of input. Sound security practices—such as
the enforcement of the principle of least privilege
or attack surface reduction—can mitigate the risks
to a certain degree, but they are prone to human
error, and it is hard to guarantee their effectiveness
and completeness. Signature-based Web applica-
tion firewalls—which act as proxy servers filtering
inputs before they reach Web applications—and
other network-level intrusion detection methods
may not be able to detect SQLIAs that employ
evasion techniques (Maor & Shulman, 2005).

Detection or prevention of SQLIAs is a topic
of active research in industry and academia. An
accuracy of 100% is claimed by recently published
techniques that use static and/or dynamic analysis
(Halfond & Orso, 2005; Buehrer, Weide, & Sivi-
lotti, 2005; Su & Wassermann, 2006; Bandhakavi,
Bisht, Madhusudan, & Venkatakrishnan, 2007),
dynamic taint analysis (Nguyen-Tuong, Guarnieri,
Greene, Shirley, & Evans, 2005; Pietraszek & Ber-
ghe, 2005), or machine learning methods (Valeur,
Mutz, & Vigna, 2005). However, the requirements
for analysis and/or instrumentation of the applica-
tion source code (Halfond & Orso, 2005; Buehrer
et al., 2005; Su & Wassermann, 2006; Bandhakavi

et al., 2007), runtime environment modification
(Nguyen-Tuong et al., 2005; Pietraszek & Berghe,
2005), or acquisition of training data (Valeur et
al., 2005) limit the adoption of these techniques
in some real-world settings. Moreover, a common
deficiency of existing SQLIA approaches based on
analyzing dynamic SQL statements is in defining
SQLIAs too restrictively, which leads to a higher
than necessary percentage of false positives (FPs).
False positives could have significant negative
impact on the utility of detection and protection
mechanisms, because investigating them takes
time and resources (Julisch & Darcier, 2002; Wer-
linger, Hawkey, Muldner, Jaferian, & Beznosov,
2008). Even worse, if the rate of FPs is high,
security practitioners might become conditioned
to ignore them.

In this paper, we propose an approach for
retrofitting existing Web applications with run-
time protection against known as well as unseen
SQL injection attacks (SQLIAs) without the in-
volvement of application developers. Our work
is mainly driven by the practical requirement of
Web-application owners that a protection mecha-
nism should be similar to a software-based security
appliance that can be “dropped” into an application
server at any time, with low administration and
operating costs. This “drop-and-use” property is
vital to the protection of Web applications where
source code, qualified developers, or security
development processes might not be available
or practical.

To detect SQLIAs, our approach combines two
heuristics. The first heuristic (labeled as “token
type conformity”) triggers an alarm if the param-
eter content of the corresponding HTTP request
is used in non-literal tokens (e.g., identifiers or
operators) of the SQL statement. While efficient,
this heuristic leaves room for false positives
when the application developer (intentionally or
accidentally) includes tainted SQL keywords or
operators in a dynamic SQL statement. This case
would trigger an SQLIA alarm, even though the
query does not result in an SQLIA. For instance,

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/retrofitting-existing-web-applications-

effective/65848

Related Content

Analysis of IoT Wearable Sensors to Monitor Chronic Diseases
M. S. Nidhya (2023). Cyber-Physical Systems and Supporting Technologies for Industrial Automation (pp.

45-63).

www.irma-international.org/chapter/analysis-of-iot-wearable-sensors-to-monitor-chronic-diseases/328492

Situational Fit in Incremental Method Engineering
Inge van de Weerd, Dominique Mirandolleand Sjaak Brinkkemper (2012). International Journal of

Information System Modeling and Design (pp. 27-45).

www.irma-international.org/article/situational-fit-incremental-method-engineering/70924

Classification of Bug Injected and Fixed Changes Using a Text Discriminator
Akihisa Yamadaand Osamu Mizuno (2015). International Journal of Software Innovation (pp. 50-62).

www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547

Indicators for Emergency and Urgent Medical Services
Ana Paula Barbosa Sobral, Aline Rangel de Oliveira, Adalberto da Cruz Lima, Guilherme dos Santos

Silvaand Patrick Fernandes Ribeiro da Fonseca (2023). Cases on Lean Thinking Applications in

Unconventional Systems (pp. 86-96).

www.irma-international.org/chapter/indicators-for-emergency-and-urgent-medical-services/313649

Supporting Consistency during the Development and Evolution of Quality Unified Use-Misuse

Case Models
Mohamed El-Attar (2015). International Journal of Secure Software Engineering (pp. 1-31).

www.irma-international.org/article/supporting-consistency-during-the-development-and-evolution-of-quality-unified-use-

misuse-case-models/142038

http://www.igi-global.com/chapter/retrofitting-existing-web-applications-effective/65848
http://www.igi-global.com/chapter/retrofitting-existing-web-applications-effective/65848
http://www.irma-international.org/chapter/analysis-of-iot-wearable-sensors-to-monitor-chronic-diseases/328492
http://www.irma-international.org/article/situational-fit-incremental-method-engineering/70924
http://www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547
http://www.irma-international.org/chapter/indicators-for-emergency-and-urgent-medical-services/313649
http://www.irma-international.org/article/supporting-consistency-during-the-development-and-evolution-of-quality-unified-use-misuse-case-models/142038
http://www.irma-international.org/article/supporting-consistency-during-the-development-and-evolution-of-quality-unified-use-misuse-case-models/142038

